Refine Your Search

Topic

Search Results

Journal Article

Unveiling the Potential of Hydrogen in a Downsized Gasoline Direct Injection Engine Performance and Emissions Experimental Study

2024-05-11
Abstract The transportation sector’s growing focus on addressing environmental and sustainable energy concerns has led to a pursuit of the decarbonization path. In this context, hydrogen emerges as a promising zero-carbon fuel. The ability of hydrogen fuel to provide reliable performance while reducing environmental impact makes it crucial in the quest for net zero targets. This study compares gasoline and hydrogen combustion in a single-cylinder boosted direct injection (DI) spark ignition engine under various operating conditions. Initially, the engine was run over a wide range of lambda values to determine the optimal operating point for hydrogen and demonstrate lean hydrogen combustion’s benefits over gasoline combustion. Furthermore, a load sweep test was conducted at 2000 rpm, and the performance and emission results were compared between gasoline and optimized hydrogen combustion. An in-depth analysis was conducted by varying fuel injection time and pressure.
Journal Article

Hydrogen Injection Position Impact: Experimental Analysis of Central Direct Injection and Side Direct Injection in Engines

2024-04-18
Abstract A detailed investigation was carried out on the performance, combustion, and emissions of a single-cylinder direct injection hydrogen spark ignition (SI) engine with either a side-mounted direct injection (SDI) or a centrally installed direct injection (CDI) injector. The first part of the study analyzed the performance and emissions characteristics of CDI and SDI engine operations with different injection timings and pressures. This was followed by comparing the engine’s performance and emissions of the CDI and SDI operations at different engine speeds and relative air-to-fuel ratios (lambda) with the optimized injection pressure and timings. Furthermore, the performance and emission attributes of the hydrogen engine with the CDI and SDI setups were conducted at a fixed λ value of 2.75 across a broad spectrum of engine loads. The study’s main outcome demonstrates that both direct injection systems produced near-zero CO2, CO, and HC emissions.
Journal Article

TOC

2024-04-15
Abstract TOC
Journal Article

Application of a Comprehensive Lagrangian–Eulerian Spark-Ignition Model to Different Operating Conditions

2024-04-08
Abstract Increasing engine efficiency is essential to reducing emissions, which is a priority for automakers. Unconventional modes such as boosted and highly dilute operation have the potential to increase engine efficiency but suffer from stability concerns and cyclic variability. To aid engineers in designing ignition systems that reduce cyclic variability in such engine operation modes, reliable and accurate spark-ignition models are necessary. In this article, a Lagrangian–Eulerian spark-ignition (LESI) model is used to simulate electrical discharge, spark channel elongation, and ignition in inert or reacting crossflow within a combustion vessel, at different pressures, flow speeds, and dilution rates. First the model formulation is briefly revisited. Then, the experimental and simulations setups are presented.
Journal Article

Experimental Investigation of a Flexible Airframe Taxiing Over an Uneven Runway for Aircraft Vibration Testing

2024-03-01
Abstract The ground vibration test (GVT) is an important phase in a new aircraft development program, or the structural modification of a certified aircraft, to experimentally determine the structural vibrational modes of the aircraft and their modal parameters. These modal parameters are used to validate and correlate the dynamic finite element model of the aircraft to predict potential structural instabilities (such as flutter), assessing the significance of modifications to research vehicles by comparing the modal data before and after the modification and helping to resolve in-flight anomalies. Due to the high cost and the extensive preparations of such tests, a new method of vibration testing called the taxi vibration test (TVT) rooted in operational modal analysis (OMA) was recently proposed and investigated as an alternative method to conventional GVT.
Journal Article

Development of a Turbulent Jet-Controlled Compression Ignition Engine Concept Using Spray-Guided Stratification for Fueling a Passive Prechamber

2024-01-24
Abstract Improving thermal efficiency of an internal combustion engine is one of the most cost-effective ways to reduce life cycle-based CO2 emissions for transportation. Lean burn technology has the potential to reach high thermal efficiency if simultaneous low NOx, HC, and CO emissions can be achieved. Low NOx can be realized by ultra-lean (λ ≥ 2) spark-ignited combustion; however, the HC and CO emissions can increase due to slow flame propagation and high combustion variability. In this work, we introduce a new combustion concept called turbulent jet-controlled compression ignition, which utilizes multiple turbulent jets to ignite the mixture and subsequently triggers end gas autoignition. As a result, the ultra-lean combustion is further improved with reduced late-cycle combustion duration and enhanced HC and CO oxidation. A low-cost passive prechamber is innovatively fueled using a DI injector in the main combustion chamber through spray-guided stratification.
Journal Article

Torque Converter Dynamic Characterization Using Torque Transmissibility Frequency Response Functions: Locked Clutch Operation

2024-01-10
Abstract A unique torque converter test setup was used to measure the torque transmissibility frequency response function of four torque converter clutch dampers using a stepped, multi-sine-tone, excitation technique. The four torque converter clutch dampers were modeled using a lumped parameter technique, and the damper parameters of stiffness, damping, and friction were estimated using a manual, iterative parameter estimation process. The final damper parameters were selected such that the natural frequency and damping ratio of the simulated torque transmissibility frequency response functions were within 10% and 20% error, respectively, of the experimental modal parameters. This target was achieved for all but one of the tested dampers. The damper models include stiffness nonlinearities, and a speed-dependent friction torque due to centrifugal loading of the damper springs.
Journal Article

Machine Learning Tabulation Scheme for Fast Chemical Kinetics Computation

2023-12-28
Abstract This study proposes a machine learning tabulation (MLT) method that employs deep neural networks (DNNs) to predict ignition delay and knock propensity in spark ignition (SI) engines. The commonly used Arrhenius model and Livengood–Wu integral for fast knock prediction are not accurate enough to account for residual gas species and may require adjustments or modifications to account for specific engine characteristics. Detailed kinetics modeling is computationally expensive, so the MLT approach is introduced to solve these issues. The MLT method uses precalculated thermochemical states of the mixture that are clustered based on a combustion progress variable. Hundreds of DNNs are trained with the stochastic Levenberg–Marquardt (SLM) optimization algorithm, reducing training time and memory requirements for large-scale problems. MLT has high interpolation accuracy, eliminates the need for table storage, and reduces memory requirements by three orders of magnitude.
Journal Article

Computational Investigation of a Flexible Airframe Taxiing Over an Uneven Runway for Aircraft Vibration Testing

2023-12-15
Abstract Ground vibration testing (GVT) is an important phase of the development, or the structural modification of an aircraft program. The modes of vibration and their associated parameters extracted from the GVT are used to modify the structural model of the aircraft to make more reliable dynamics predictions to satisfy certification authorities. Due to the high cost and the extensive preparations for such tests, a new method of vibration testing called taxi vibration testing (TVT) rooted in operational modal analysis (OMA) was recently proposed and investigated by the German Institute for Aerospace Research (DLR) as alternative to conventional GVT. In this investigation, a computational framework based on fully coupled flexible multibody dynamics for TVT is presented to further investigate the applicability of the TVT to flexible airframes. The time domain decomposition (TDD) method for OMA was used to postprocess the response of the airframe during a TVT.
Journal Article

Assessing the Characterization for Multiple Cones and Cone Portions Utilizing X-Ray Diffraction in Single Point Incremental Forming

2023-12-06
Abstract Single point incremental forming (SPIF) is a robust and new technique. In the recent research scenario, materials properties such as microstructure, micro-texture analysis, and crystal structure can be accessed through characterization non-destructive techniques, e.g., scanning electron microscope (SEM), electron backscattered diffraction (EBSD), and X-ray diffraction (XRD). XRD is a non-destructive method for analyzing the fine structure of materials. This study explores how process variables such as wall angle, step size, feed rate, and forming speed affect the parts of large-, medium-, and small-sized truncated cones of aluminum alloy AA3003-O sheet. Several cone parts of truncated cones are used in this investigation to implement Scherrer’s method. The two primary determining factors peak height and crystallite size are assessed for additional analysis in the present research.
Journal Article

A Global Survey of Standardization and Industry Practices of Automotive Cybersecurity Validation and Verification Testing Processes and Tools

2023-11-16
Abstract The United Nation Economic Commission for Europe (UNECE) Regulation 155—Cybersecurity and Cybersecurity Management System (UN R155) mandates the development of cybersecurity management systems (CSMS) as part of a vehicle’s lifecycle. An inherent component of the CSMS is cybersecurity risk management and assessment. Validation and verification testing is a key activity for measuring the effectiveness of risk management, and it is mandated by UN R155 for type approval. Due to the focus of R155 and its suggested implementation guideline, ISO/SAE 21434:2021—Road Vehicle Cybersecurity Engineering, mainly centering on the alignment of cybersecurity risk management to the vehicle development lifecycle, there is a gap in knowledge of proscribed activities for validation and verification testing.
Journal Article

The Neutronic Engine: A Platform for Operando Neutron Diffraction in Internal Combustion Engines

2023-11-09
Abstract Neutron diffraction is a powerful tool for noninvasive and nondestructive characterization of materials and can be applied even in large devices such as internal combustion engines thanks to neutrons’ exceptional ability to penetrate many materials. While proof-of-concept experiments have shown the ability to measure spatially and temporally resolved lattice strains in a small aluminum engine on a timescale of minutes over a limited spatial region, extending this capability to timescales on the order of a crank angle degree over the full volume of the combustion chamber requires careful design and optimization of the engine structure to minimize attenuation of the incident and diffracted neutrons to maximize count rates.
Journal Article

Methanol (M85) Port Fuel-Injected Spark Ignition Motorcycle Engine Development—Part 1: Combustion Optimization for Efficiency Improvement and Emission Reduction

2023-10-27
Abstract Limited fossil fuel resources and carbonaceous greenhouse gas emissions are two major problems the world faces today. Alternative fuels can effectively power internal combustion engines to address these issues. Methanol can be an alternative to conventional fuels, particularly to displace gasoline in spark ignition engines. The physicochemical properties of methanol are significantly different than baseline gasoline and fuel mixture-aim lambda; hence methanol-fueled engines require modifications in the fuel injection parameters. This study optimized the fuel injection quantity, spark timing, and air–fuel ratio for M85 (85% v/v methanol + 15% v/v gasoline) fueling of a port fuel-injected single-cylinder 500 cc motorcycle test engine. Comparative engine performance, combustion, and emissions analyses were performed for M85 and baseline gasoline.
Journal Article

Methanol (M85) Port-Fuel-Injected Spark Ignition Motorcycle Engine Development—Part 2: Dynamic Performance, Transient Emissions, and Catalytic Converter Effectiveness

2023-10-27
Abstract Methanol is emerging as an alternate internal combustion engine fuel. It is getting attention in countries such as China and India as an emerging transport fuel. Using methanol in spark ignition engines is easier and more economical than in compression ignition engines via the blending approach. M85 (85% v/v methanol and 15% v/v gasoline) is one of the preferred blends with the highest methanol concentration. However, its physicochemical properties significantly differ from gasoline, leading to challenges in operating existing vehicles. This experimental study addresses the challenges such as cold-start operation and poor throttle response of M85-fueled motorcycle using a port fuel injection engine. In this study, M85-fueled motorcycle prototype is developed with superior performance, similar/better drivability, and lower emissions than a gasoline-fueled port-fuel-injected motorcycle.
Journal Article

Divided Exhaust Period Assessment for Fuel-Enrichment Reduction in Turbocharged Spark-Ignition Engines

2023-10-26
Abstract Turbocharged spark-ignition (SI) engines, owing to frequent engine knocking events, utilize retarded spark timing that causes combustion inefficiency, and high turbine inlet temperature (Trb-In T) levels. Fuel enrichment is implemented at high power levels to prevent excessive Trb-In T levels, resulting in an additional fueling penalty and higher CO emissions. In current times, fuel-enrichment reductions are of high strategic importance for engine manufacturers to meet the imminent emissions regulations. To that end, the authors investigated the divided exhaust period (DEP) concept in a 2.2 L turbocharged SI engine with a geometric compression ratio of 14 by decoupling blowdown (BD) and scavenge (SC) events during the exhaust process. Using a validated 1D engine model, the authors first analyzed the DEP concept in terms of pumping mean effective pressure (PMEP) and engine knocking (KI) reduction.
Journal Article

TOC

2023-10-24
Abstract TOC
Journal Article

Visualization and Statistical Analysis of Passive Pre-chamber Knock in a Constant-volume Optical Engine

2023-10-20
Abstract This study investigates the behavior of pre-chamber knock in comparison to traditional spark ignition engine knock, using a modified constant-volume gasoline engine with an optically accessible piston. The aim is to provide a deeper understanding of pre-chamber knock combustion and its potential for mitigating knock. Five passive pre-chambers with different nozzle diameters, volumes, and nozzle numbers were tested, and nitrogen dilution was varied from 0% to 10%. The stochastic nature of knock behavior necessitates the use of statistical methods, leading to the proposal of a high-frequency band-pass filter (37–43 kHz) as an alternative pre-chamber knock metric. Pre-chamber knock combustion was found to exhibit fewer strong knock cycles compared to SI engines, indicating its potential for mitigating knock intensity. High-speed images revealed pre-chamber knock primarily occurs near the liner, where end-gas knock is typically exhibited.
Journal Article

Contribution to the Objective Evaluation of Combined Longitudinal and Lateral Vehicle Dynamics in Nonlinear Driving Range

2023-10-19
Abstract Since the complexity of modern vehicles is increasing continuously, car manufacturers are forced to improve the efficiency of their development process to remain profitable. A frequently mentioned measure is the consequent integration of virtual methods. In this regard, objective evaluation criteria are essential for the virtual design of driving dynamics. Therefore, this article aims to identify robust objective evaluation criteria for the nonlinear combined longitudinal and lateral dynamics of a vehicle. The article focuses on the acceleration in a turn maneuver since available objective criteria do not consider all relevant characteristics of vehicle dynamics. For the identification of the objective criteria, a generic method is developed and applied. First, an open-loop test procedure and a set of potential robust objective criteria are defined.
Journal Article

Numerical Analysis and Modelling of the Effectiveness of Micro Wind Turbines Installed in an Electric Vehicle as a Range Extender

2023-10-10
Abstract In recent years, the number of electric vehicles (EVs) has grown rapidly, as well as public interest in them. However, the lack of sufficient range is one of the most common complaints about these vehicles, which is particularly problematic for people with long daily commutes. Thus, this article proposed a solution to this problem by installing micro wind turbines (MWTs) on EVs as a range extender. The turbines will generate electricity by converting the kinetic energy of the air flowing through the MWT into mechanical energy, which can have a reasonable effect on the vehicle aerodynamics. The article uses mathematical modelling and numerical analysis. Regarding the modelling, a detailed EV model in MATLAB/SIMULINK was developed to analyze the EV performance using various driving cycles in real time.
Journal Article

Determination of the Heat-Controlled Accumulator Volume for the Two-Phase Thermal Control Systems of Spacecraft

2023-09-29
Abstract For spacecraft with high power consumption, it is reasonable to build the thermal control system based on a two-phase mechanically pumped loop. The heat-controlled accumulator is a key element of the two-phase mechanically pumped loop, which allows for the control of pressure in the loop and maintains the required level of coolant boiling temperature or cavitation margin at the pump inlet. There can be two critical modes of loop operation where the ability to control pressure will be lost. The first critical mode occurs when the accumulator fills with liquid at high heat loads. The second critical mode occurs when the accumulator is at low heat loads and partial loss of coolant, for example, due to the leak caused by micrometeorite breakdown. Both modes are caused by insufficient accumulator volume or working fluid charge.
X