Refine Your Search

Topic

Search Results

Journal Article

Post-Treatment and Hybrid Techniques for Prolonging the Service Life of Fused Deposition Modeling Printed Automotive Parts: A Wear Strength Perspective

2024-04-24
Abstract This study aims to explore the wear characteristics of fused deposition modeling (FDM) printed automotive parts and techniques to improve wear performance. The surface roughness of the parts printed from this widely used additive manufacturing technology requires more attention to reduce surface roughness further and subsequently the mechanical strength of the printed geometries. The main aspect of this study is to examine the effect of process parameters and annealing on the surface roughness and the wear rate of FDM printed acrylonitrile butadiene styrene (ABS) parts to diminish the issue mentioned above. American Society for Testing and Materials (ASTM) G99 specified test specimens were fabricated for the investigations. The parameters considered in this study were nozzle temperature, infill density, printing velocity, and top/bottom pattern.
Journal Article

Failure Analysis of Cryogenically Treated and Gas Nitrided Die Steel in Rotating Bending Fatigue

2024-04-24
Abstract AISI H13 hot work tool steel is commonly used for applications such as hot forging and hot extrusion in mechanical working operations that face thermal and mechanical stress fluctuations, leading to premature failures. Cryogenic treatment was applied for AISI H13 steel to improve the surface hardness and thereby fatigue resistance. This work involves failure analysis of H13 steel specimens subjected to cryogenic treatment and gas nitriding. The specimens were heated to 1020°C, oil quenched followed by double tempering at 550°C for 2 h, and subsequently, deep cryogenically treated at −185°C in the cryochamber. Gas nitriding was carried out for 24 h at 500°C for 200 μm case depth in NH3 surroundings. The specimens were subjected to rotating bending fatigue at constant amplitude loading at room temperature.
Journal Article

Dimethyl Ether Biogas Reactivity-Controlled Compression Ignition for Sustainable Power Generation with Low Nitrogen Oxide Emissions

2024-04-22
Abstract Biogas (60% methane–40% CO2 approximately) can be used in the reactivity-controlled compression ignition (RCCI) mode along with a high-reactivity fuel (HRF). In this work dimethyl ether (DME) that can also be produced from renewable sources was used as the HRF as a move toward sustainable power generation. The two-cylinder turbocharged diesel engine modified to work in the DME–biogas RCCI (DMB-RCCI) mode was studied under different proportions of methane (45–95%) in biogas since the quality of this fuel can vary depending on the feedstock and production method. Only a narrow range of biogas to DME ratios could be tolerated in this mode at each output without misfire or knock. Detailed experiments were conducted at brake mean effective pressures (BMEPs) of 3 and 5 bar at a speed of 1500 rpm and comparisons were made with the diesel–biogas dual-fuel and diesel–biogas RCCI modes under similar methane flow rates while the proportion of CO2 was varied.
Journal Article

Potential Analysis of Defossilized Operation of a Heavy-Duty Dual-Fuel Engine Utilizing Dimethyl Carbonate/Methyl Formate as Primary and Poly Oxymethylene Dimethyl Ether as Pilot Fuel

2024-04-18
Abstract This study demonstrates the defossilized operation of a heavy-duty port-fuel-injected dual-fuel engine and highlights its potential benefits with minimal retrofitting effort. The investigation focuses on the optical characterization of the in-cylinder processes, ranging from mixture formation, ignition, and combustion, on a fully optically accessible single-cylinder research engine. The article revisits selected operating conditions in a thermodynamic configuration combined with Fourier transform infrared spectroscopy. One approach is to quickly diminish fossil fuel use by retrofitting present engines with decarbonized or defossilized alternatives. As both fuels are oxygenated, a considerable change in the overall ignition limits, air–fuel equivalence ratio, burning rate, and resistance against undesired pre-ignition or knocking is expected, with dire need of characterization.
Journal Article

Characterization of Pyrolysis Oil Extracted from High Lignocellulosic Groundnut Shell Biomass

2024-04-18
Abstract Fossil fuel reserves are swiftly depleting when consumer demand for these fuels continues to rise. In order to meet the demand and diminish the pollution derived through conventional fuels, it is crucial to employ cleaner fuels made from substitutes such as waste biomass. Also, converting waste biomass to fuel can lower usage of landfills. There are many biomass resources that are suitable for fuel production, out of which groundnut is also a potential feedstock. Groundnut shell biomass was chosen for this study, as it is a waste leftover during shelling of groundnuts for various commercial applications. The procured groundnut shells were converted to oil using pyrolysis process and was distilled. Both the pyrolysis oil and the distilled oil were analyzed using Fourier transform infrared instrument wherein the presence of functional groups such as alcohols, amines, and carboxylic acids were identified.
Journal Article

TOC

2024-04-15
Abstract TOC
Journal Article

Spectroscopy-Based Machine Learning Approach to Predict Engine Fuel Properties of Biodiesel

2024-04-11
Abstract Various feedstocks can be employed for biodiesel production, leading to considerable variation in composition and engine fuel characteristics. Using biodiesels originating from diverse feedstocks introduces notable variations in engine characteristics. Therefore, it is imperative to scrutinize the composition and properties of biodiesel before deployment in engines, a task facilitated by predictive models. Additionally, the international commercialization of biodiesel fuel is contingent upon stringent regulations. The traditional experimental measurement of biodiesel properties is laborious and expensive, necessitating skilled personnel. Predictive models offer an alternative approach by estimating biodiesel properties without depending on experimental measurements. This research is centered on building models that correlate mid-infrared spectra of biodiesel and critical fuel properties, encompassing kinematic viscosity, cetane number, and calorific value.
Journal Article

Suitability Study of Biofuel Blend for Light Commercial Vehicle Application under Real-World Transient Operating Conditions

2024-04-10
Abstract Driving schedule of every vehicle involves transient operation in the form of changing engine speed and load conditions, which are relatively unchanged during steady-state conditions. As well, the results from transient conditions are more likely to reflect the reality. So, the current research article is focused on analyzing the biofuel-like lemon peel oil (LPO) behavior under real-world transient conditions with fuel injection parameter MAP developed from steady-state experiments. At first, engine parameters and response MAPs are developed by using a response surface methodology (RSM)-based multi-objective optimization technique. Then, the vehicle model has been developed by incorporating real-world transient operating conditions. Finally, the developed injection parameters and response MAPs are embedded in the vehicle model to analyze the biofuel behavior under transient operating conditions.
Journal Article

Modeling Approach for Hybrid Integration of Renewable Energy Sources with Vehicle-to-Grid Technology

2024-03-29
Abstract This article presents a technical study on the integration of hybrid renewable energy sources (RES) with vehicle-to-grid (V2G) technology, aiming to enhance energy efficiency, grid stability, and mitigating power imbalances. The growing adoption of RES and electric vehicles (EV) necessitates innovative solutions to mitigate intermittency and optimize resource utilization. The study’s primary objective is to design and analyze a hybrid distribution generation system encompassing solar photovoltaic (PV) and wind power stations, along with a conventional diesel generator, connected to the utility grid. A V2G system is strategically embedded within the microgrid to facilitate bidirectional power exchange between EV and the grid. Methodologically, MATLAB/Simulink® 2021a is employed to simulate the system’s performance over one day.
Journal Article

Microstructural and Corrosion Behavior of Thin Sheet of Stainless Steel-Grade Super Duplex 2507 by Gas Tungsten Arc Welding

2024-03-21
Abstract Super duplex stainless steel (SDSS) is a type of stainless steel made of chromium (Cr), nickel (Ni), and iron (Fe). In the present work, a 1.6 mm wide thin sheet of SDSS is joined using gas tungsten arc welding (GTAW). The ideal parameter for a bead-on-plate trial is found, and 0.216 kJ/mm of heat input is used for welding. As an outcome of the welding heating cycle and subsequent cooling, a microstructural study revealed coarse microstructure in the heat-affected zone and weld zone. The corrosion rate for welded joints is 9.3% higher than the base metal rate. Following the corrosion test, scanning electron microscope (SEM) analysis revealed that the welded joint’s oxide development generated a larger corrosive attack on the weld surface than the base metal surface. The percentages of chromium (12.5%) and molybdenum (24%) in the welded joints are less than those in the base metal of SDSS, as per energy dispersive X-ray (EDX) analysis.
Journal Article

Effect of Turbine Speed Parameter on Exhaust Pulse Energy Matching of an Asymmetric Twin-Scroll Turbocharged Heavy-Duty Engine

2024-03-04
Abstract The two-branch exhaust of an asymmetric twin-scroll turbocharged engine are asymmetrically and periodically complicated, which has great impact on turbine matching. In this article, a matching effect of turbine speed parameter on asymmetric twin-scroll turbines based on the exhaust pulse energy weight distribution of a heavy-duty diesel engine was introduced. First, it was built as an asymmetric twin-scroll turbine matching based on exhaust pulse energy distribution. Then, by comparing the average matching point and energy matching points on the corresponding turbine performance map, it is revealed that the turbine speed parameter of energy matching points was a significant deviation from the turbine speed parameter under peak efficiency, which leads to the actual turbine operating efficiency lower than the optimal state.
Journal Article

Review of Research on Asymmetric Twin-Scroll Turbocharging for Heavy-Duty Diesel Engines

2024-02-21
Abstract Asymmetric twin-scroll turbocharging technology, as one of the effective technologies for balancing fuel economy and nitrogen oxide emissions, has been widely studied in the past decade. In response to the ever-increasing demands for improved fuel efficiency and reduced exhaust emissions, extensive research efforts have been dedicated to investigating various aspects of this technology. Researchers have conducted both experimental and simulation studies to delve into the intricate flow mechanism of asymmetric twin-scroll turbines. Furthermore, considerable attention has been given to exploring the optimal matching between asymmetric twin-scroll turbines and engines, as well as devising innovative flow control methods for these turbines. Additionally, researchers have sought to comprehend the impact of exhaust pulse flow on the performance of asymmetric twin-scroll turbines.
Journal Article

Demonstration of 2027 Emissions Standards Compliance Using Heavy-Duty Gasoline Compression Ignition with P1 Hybridization

2024-02-19
Abstract Heavy-duty on-road engines are expected to conform to an ultralow NOx (ULNOx) standard of 0.027 g/kWh over the composite US heavy-duty transient federal test procedure (HD-FTP) cycle by 2031, a 90% reduction compared to 2010 emissions standards. Additionally, these engines are expected to conform to Phase 2 greenhouse gas regulations, which require tailpipe CO2 emissions under 579 g/kWh. This study experimentally demonstrates the ability of high fuel stratification gasoline compression ignition (HFS-GCI) to satisfy these emissions standards. Steady-state and transient tests are conducted on a prototype multi-cylinder heavy-duty GCI engine based on a 2010-compliant Cummins ISX15 diesel engine with a urea-SCR aftertreatment system (ATS). Steady-state calibration exercises are undertaken to develop highly fuel-efficient GCI calibration maps at both cold-start and warmed up conditions.
Journal Article

TOC

2024-02-12
Abstract TOC
Journal Article

Use of Artificial Neural Network to Develop Surrogates for Hydrotreated Vegetable Oil with Experimental Validation in Ignition Quality Tester

2024-02-01
Abstract This article presents surrogate mixtures that simulate the physical and chemical properties in the auto-ignition of hydrotreated vegetable oil (HVO). Experimental investigation was conducted in the Ignition Quality Tester (IQT) to validate the auto-ignition properties with respect to those of the target fuel. The surrogate development approach is assisted by artificial neural network (ANN) embedded in MATLAB optimization function. Aspen HYSYS is used to calculate the key physical and chemical properties of hundreds of mixtures of representative components, mainly alkanes—the dominant components of HVO, to train the learning algorithm. Binary and ternary mixtures are developed and validated in the IQT. The target properties include the derived cetane number (DCN), density, viscosity, surface tension, molecular weight, and volatility represented by the distillation curve. The developed surrogates match the target fuel in terms of ignition delay and DCN within 6% error range.
Journal Article

Research on Improving the Efficiency of Centrifugal Pump Using the Different Vane Surfaces of Bearings

2024-01-29
Abstract With the use of the stepped surface of the friction pairs of the stepped bearings (SB) in the high-speed centrifugal pumps, its liquid film thickness is suddenly changed and it was discontinuously distributed in the direction of motion of pump. To ensure the continuity of the liquid film thickness and enhance the lubrication efficiency of the pump, based on the lubrication model of the SB, two other structures of the inclined surfaces [inclined bearings (IB)] and curved surfaces [curved bearings (CB)] used to replace stepped surfaces of the SB are investigated, respectively. Under the same conditions of the minimum thickness of the liquid film and initial dimensions of the sliding friction pairs, the influence of both the thickness ratio (α) of the liquid film and dimension ratio (β) in the direction of motion of SB, IB, and CB on the bearing capacity and friction coefficient of the liquid film are simulated and analyzed, respectively.
Journal Article

Machine Learning-Based Modeling and Predictive Control of Combustion Phasing and Load in a Dual-Fuel Low-Temperature Combustion Engine

2024-01-18
Abstract Reactivity-controlled compression ignition (RCCI) engine is an innovative dual-fuel strategy, which uses two fuels with different reactivity and physical properties to achieve low-temperature combustion, resulting in reduced emissions of oxides of nitrogen (NOx), particulate matter, and improved fuel efficiency at part-load engine operating conditions compared to conventional diesel engines. However, RCCI operation at high loads poses challenges due to the premixed nature of RCCI combustion. Furthermore, precise controls of indicated mean effective pressure (IMEP) and CA50 combustion phasing (crank angle corresponding to 50% of cumulative heat release) are crucial for drivability, fuel conversion efficiency, and combustion stability of an RCCI engine.
Journal Article

Artificial Intelligence-Based Field-Programmable Gate Array Accelerator for Electric Vehicles Battery Management System

2024-01-04
Abstract The swift progress of electric vehicles (EVs) and hybrid electric vehicles (HEVs) has driven advancements in battery management systems (BMS). However, optimizing the algorithms that drive these systems remains a challenge. Recent breakthroughs in data science, particularly in deep learning networks, have introduced the long–short-term memory (LSTM) network as a solution for sequence problems. While graphics processing units (GPUs) and application-specific integrated circuits (ASICs) have been used to improve performance in AI-based applications, field-programmable gate arrays (FPGAs) have gained popularity due to their low power consumption and high-speed acceleration, making them ideal for artificial intelligence (AI) implementation. One of the critical components of EVs and HEVs is the BMS, which performs operations to optimize the use of energy stored in lithium-ion batteries (LiBs).
Journal Article

An Energy-Efficient Merge-Aware Cruise Control Method for Connected Electric Vehicles

2023-12-28
Abstract This article presents a merge-aware cruise control method that incorporates vehicle-to-vehicle (V2V) information and aims at improving the energy efficiency of vehicles and reducing speed disruptions of merging traffic during highway merges. During the events of highway merges, the gap between the ego and the preceding vehicle reduces drastically, which can result in sudden braking of the ego vehicle and thus reduction of its energy efficiency. We propose a rather simple cruise control algorithm to eliminate such sudden variations in the gap and velocity with respect to the preceding vehicle during highway merges, thus reducing the large accelerations and braking during such events and thereby improving energy efficiency. The proposed algorithm incorporates future traffic information and has computational requirements similar to adaptive cruise control methods, hence it is real-time applicable.
Journal Article

Energy-Efficient Dispatching of Battery Electric Truck Fleets with Backhauls and Time Windows

2023-12-22
Abstract The adoption of battery electric trucks (BETs) as a replacement for diesel trucks has potential to significantly reduce greenhouse gas emissions from the freight transportation sector. However, BETs have shorter driving range and lower payload capacity, which need to be taken into account when dispatching them. This article addresses the energy-efficient dispatching of BET fleets, considering backhauls and time windows. To optimize vehicle utilization, customers are categorized into two groups: linehaul customers requiring deliveries, where the deliveries need to be made following the last-in-first-out principle, and backhaul customers requiring pickups. The objective is to determine a set of energy-efficient routes that integrate both linehaul and backhaul customers while considering factors such as limited driving range, payload capacity of BETs, and the possibility of en route recharging.
X