Refine Your Search

Topic

Search Results

Journal Article

Unveiling the Potential of Hydrogen in a Downsized Gasoline Direct Injection Engine Performance and Emissions Experimental Study

2024-05-11
Abstract The transportation sector’s growing focus on addressing environmental and sustainable energy concerns has led to a pursuit of the decarbonization path. In this context, hydrogen emerges as a promising zero-carbon fuel. The ability of hydrogen fuel to provide reliable performance while reducing environmental impact makes it crucial in the quest for net zero targets. This study compares gasoline and hydrogen combustion in a single-cylinder boosted direct injection (DI) spark ignition engine under various operating conditions. Initially, the engine was run over a wide range of lambda values to determine the optimal operating point for hydrogen and demonstrate lean hydrogen combustion’s benefits over gasoline combustion. Furthermore, a load sweep test was conducted at 2000 rpm, and the performance and emission results were compared between gasoline and optimized hydrogen combustion. An in-depth analysis was conducted by varying fuel injection time and pressure.
Journal Article

Optimizing Fuel Injection Timing for Multiple Injection Using Reinforcement Learning and Functional Mock-up Unit for a Small-bore Diesel Engine

2024-05-03
Abstract Reinforcement learning (RL) is a computational approach to understanding and automating goal-directed learning and decision-making. The difference from other computational approaches is the emphasis on learning by an agent from direct interaction with its environment to achieve long-term goals [1]. In this work, the RL algorithm was implemented using Python. This then enables the RL algorithm to make decisions to optimize the output from the system and provide real-time adaptation to changes and their retention for future usage. A diesel engine is a complex system where a RL algorithm can address the NOx–soot emissions trade-off by controlling fuel injection quantity and timing. This study used RL to optimize the fuel injection timing to get a better NO–soot trade-off for a common rail diesel engine. The diesel engine utilizes a pilot–main and a pilot–main–post-fuel injection strategy.
Journal Article

Fuel Efficiency Analysis and Control of a Series Electric Hybrid Compact Wheel Loader

2024-05-03
Abstract The escalating demand for more efficient and sustainable working machines has pushed manufacturers toward adopting electric hybrid technology. Electric powertrains promise significant fuel savings, which are highly dependent on the nature of the duty cycle of the machine. In this study, experimental data measured from a wheel loader in a short-loading Y-cycle is used to exercise a developed mathematical model of a series electric hybrid wheel loader. The efficiency and energy consumption of the studied architecture are analyzed and compared to the consumption of the measured conventional machine that uses a diesel engine and a hydrostatic transmission. The results show at least 30% reduction in fuel consumption by using the proposed series electric hybrid powertrain, the diesel engine rotational speed is steady, and the transient loads are mitigated by the electric powertrain.
Journal Article

Post-Treatment and Hybrid Techniques for Prolonging the Service Life of Fused Deposition Modeling Printed Automotive Parts: A Wear Strength Perspective

2024-04-24
Abstract This study aims to explore the wear characteristics of fused deposition modeling (FDM) printed automotive parts and techniques to improve wear performance. The surface roughness of the parts printed from this widely used additive manufacturing technology requires more attention to reduce surface roughness further and subsequently the mechanical strength of the printed geometries. The main aspect of this study is to examine the effect of process parameters and annealing on the surface roughness and the wear rate of FDM printed acrylonitrile butadiene styrene (ABS) parts to diminish the issue mentioned above. American Society for Testing and Materials (ASTM) G99 specified test specimens were fabricated for the investigations. The parameters considered in this study were nozzle temperature, infill density, printing velocity, and top/bottom pattern.
Journal Article

Optimized Emission Analysis in Hydrogen Internal Combustion Engines: Fourier Transform Infrared Spectroscopy Innovations and Exhaust Humidity Analysis

2024-04-23
Abstract In today’s landscape, environmental protection and nature conservation have become paramount across industries, spurring the ever-increasing aspect of decarbonization. Regulatory measures in transportation have shifted focus away from combustion engines, making way for electric mobility, particularly in smaller engines. However, larger applications like ships and stationary power generation face limitations, not enabling an analogous shift to electrification. Instead, the emphasis shifted to zero-carbon fuel alternatives such as hydrogen and ammonia. In addition to minimal carbon-containing emissions due to incineration of lubricating oil, hydrogen combustion with air results in nitrogen oxide emissions, still necessitating quantification for engine operation compliance with legal regulations.
Journal Article

Dimethyl Ether Biogas Reactivity-Controlled Compression Ignition for Sustainable Power Generation with Low Nitrogen Oxide Emissions

2024-04-22
Abstract Biogas (60% methane–40% CO2 approximately) can be used in the reactivity-controlled compression ignition (RCCI) mode along with a high-reactivity fuel (HRF). In this work dimethyl ether (DME) that can also be produced from renewable sources was used as the HRF as a move toward sustainable power generation. The two-cylinder turbocharged diesel engine modified to work in the DME–biogas RCCI (DMB-RCCI) mode was studied under different proportions of methane (45–95%) in biogas since the quality of this fuel can vary depending on the feedstock and production method. Only a narrow range of biogas to DME ratios could be tolerated in this mode at each output without misfire or knock. Detailed experiments were conducted at brake mean effective pressures (BMEPs) of 3 and 5 bar at a speed of 1500 rpm and comparisons were made with the diesel–biogas dual-fuel and diesel–biogas RCCI modes under similar methane flow rates while the proportion of CO2 was varied.
Journal Article

Potential Analysis of Defossilized Operation of a Heavy-Duty Dual-Fuel Engine Utilizing Dimethyl Carbonate/Methyl Formate as Primary and Poly Oxymethylene Dimethyl Ether as Pilot Fuel

2024-04-18
Abstract This study demonstrates the defossilized operation of a heavy-duty port-fuel-injected dual-fuel engine and highlights its potential benefits with minimal retrofitting effort. The investigation focuses on the optical characterization of the in-cylinder processes, ranging from mixture formation, ignition, and combustion, on a fully optically accessible single-cylinder research engine. The article revisits selected operating conditions in a thermodynamic configuration combined with Fourier transform infrared spectroscopy. One approach is to quickly diminish fossil fuel use by retrofitting present engines with decarbonized or defossilized alternatives. As both fuels are oxygenated, a considerable change in the overall ignition limits, air–fuel equivalence ratio, burning rate, and resistance against undesired pre-ignition or knocking is expected, with dire need of characterization.
Journal Article

Characterization of Pyrolysis Oil Extracted from High Lignocellulosic Groundnut Shell Biomass

2024-04-18
Abstract Fossil fuel reserves are swiftly depleting when consumer demand for these fuels continues to rise. In order to meet the demand and diminish the pollution derived through conventional fuels, it is crucial to employ cleaner fuels made from substitutes such as waste biomass. Also, converting waste biomass to fuel can lower usage of landfills. There are many biomass resources that are suitable for fuel production, out of which groundnut is also a potential feedstock. Groundnut shell biomass was chosen for this study, as it is a waste leftover during shelling of groundnuts for various commercial applications. The procured groundnut shells were converted to oil using pyrolysis process and was distilled. Both the pyrolysis oil and the distilled oil were analyzed using Fourier transform infrared instrument wherein the presence of functional groups such as alcohols, amines, and carboxylic acids were identified.
Journal Article

TOC

2024-04-15
Abstract TOC
Journal Article

Spectroscopy-Based Machine Learning Approach to Predict Engine Fuel Properties of Biodiesel

2024-04-11
Abstract Various feedstocks can be employed for biodiesel production, leading to considerable variation in composition and engine fuel characteristics. Using biodiesels originating from diverse feedstocks introduces notable variations in engine characteristics. Therefore, it is imperative to scrutinize the composition and properties of biodiesel before deployment in engines, a task facilitated by predictive models. Additionally, the international commercialization of biodiesel fuel is contingent upon stringent regulations. The traditional experimental measurement of biodiesel properties is laborious and expensive, necessitating skilled personnel. Predictive models offer an alternative approach by estimating biodiesel properties without depending on experimental measurements. This research is centered on building models that correlate mid-infrared spectra of biodiesel and critical fuel properties, encompassing kinematic viscosity, cetane number, and calorific value.
Journal Article

Suitability Study of Biofuel Blend for Light Commercial Vehicle Application under Real-World Transient Operating Conditions

2024-04-10
Abstract Driving schedule of every vehicle involves transient operation in the form of changing engine speed and load conditions, which are relatively unchanged during steady-state conditions. As well, the results from transient conditions are more likely to reflect the reality. So, the current research article is focused on analyzing the biofuel-like lemon peel oil (LPO) behavior under real-world transient conditions with fuel injection parameter MAP developed from steady-state experiments. At first, engine parameters and response MAPs are developed by using a response surface methodology (RSM)-based multi-objective optimization technique. Then, the vehicle model has been developed by incorporating real-world transient operating conditions. Finally, the developed injection parameters and response MAPs are embedded in the vehicle model to analyze the biofuel behavior under transient operating conditions.
Journal Article

Water Droplet Collison and Erosion on High-Speed Spinning Wheels

2024-04-04
Abstract The water droplet erosion (WDE) on high-speed rotating wheels appears in several engineering fields such as wind turbines, stationary steam turbines, fuel cell turbines, and turbochargers. The main reasons for this phenomenon are the high relative velocity difference between the colliding particles and the rotor, as well as the presence of inadequate material structure and surface parameters. One of the latest challenges in this area is the compressor wheels used in turbochargers, which has a speed up to 300,000 rpm and have typically been made of aluminum alloy for decades, to achieve the lowest possible rotor inertia. However, while in the past this component was only encountered with filtered air, nowadays, due to developments in compliance with tightening emission standards, various fluids also collide with the spinning blades, which can cause mechanical damage.
Journal Article

A Diesel Engine Ring Pack Performance Assessment

2024-03-23
Abstract Demonstrating ring pack operation in an operating engine is very difficult, yet it is essential to optimize engine performance parameters such as blow-by, oil consumption, emissions, and wear. A significant amount of power is lost in friction between piston ring–cylinder liner interfaces if ring pack parameters are not optimized properly. Thus, along with these parameters, it is also necessary to reduce friction power loss in modern internal combustion engines as the oil film thickness formed between the piston ring and liner is vital for power loss reduction due to friction. Hence, it has also been a topic of research interest for decades. Piston and ring dynamics simulation software are used extensively for a better ring pack design. In this research work, a similar software for piston ring dynamics simulation reviews the ring pack performance of a four-cylinder diesel engine.
Journal Article

Effect of Turbine Speed Parameter on Exhaust Pulse Energy Matching of an Asymmetric Twin-Scroll Turbocharged Heavy-Duty Engine

2024-03-04
Abstract The two-branch exhaust of an asymmetric twin-scroll turbocharged engine are asymmetrically and periodically complicated, which has great impact on turbine matching. In this article, a matching effect of turbine speed parameter on asymmetric twin-scroll turbines based on the exhaust pulse energy weight distribution of a heavy-duty diesel engine was introduced. First, it was built as an asymmetric twin-scroll turbine matching based on exhaust pulse energy distribution. Then, by comparing the average matching point and energy matching points on the corresponding turbine performance map, it is revealed that the turbine speed parameter of energy matching points was a significant deviation from the turbine speed parameter under peak efficiency, which leads to the actual turbine operating efficiency lower than the optimal state.
Journal Article

Review of Research on Asymmetric Twin-Scroll Turbocharging for Heavy-Duty Diesel Engines

2024-02-21
Abstract Asymmetric twin-scroll turbocharging technology, as one of the effective technologies for balancing fuel economy and nitrogen oxide emissions, has been widely studied in the past decade. In response to the ever-increasing demands for improved fuel efficiency and reduced exhaust emissions, extensive research efforts have been dedicated to investigating various aspects of this technology. Researchers have conducted both experimental and simulation studies to delve into the intricate flow mechanism of asymmetric twin-scroll turbines. Furthermore, considerable attention has been given to exploring the optimal matching between asymmetric twin-scroll turbines and engines, as well as devising innovative flow control methods for these turbines. Additionally, researchers have sought to comprehend the impact of exhaust pulse flow on the performance of asymmetric twin-scroll turbines.
Journal Article

Investigation on the Surface Structure and Tribological Characterization of 10 wt.% ZrO2-Reinforced Alumina Prepared by Flame Spray Coating

2024-02-20
Abstract In this study, we have investigated the microstructural characteristics, the mechanical properties, and the dry sliding wear behavior of a ceramic coating consisting of zirconia (ZrO2) and alumina (Al2O3) deposited by flame spraying. A series of wear tests were carried out under a variety of loads and at two different sliding speeds. The evaluation included an examination of the coating microstructure, microhardness, coefficient of friction (COF), and wear resistance of the flame-sprayed coating. The results showed that the coatings had a perfectly structured micro-architecture and were metallurgically bonded to the substrate. The Al2O3 coating exhibited a fine granular structure with pores and oxides. The microstructure of Al2O3-10 wt.% ZrO2, on the other hand, showed a blocky structure with a uniform distribution of ZrO2 inclusions in the composite coating.
Journal Article

Demonstration of 2027 Emissions Standards Compliance Using Heavy-Duty Gasoline Compression Ignition with P1 Hybridization

2024-02-19
Abstract Heavy-duty on-road engines are expected to conform to an ultralow NOx (ULNOx) standard of 0.027 g/kWh over the composite US heavy-duty transient federal test procedure (HD-FTP) cycle by 2031, a 90% reduction compared to 2010 emissions standards. Additionally, these engines are expected to conform to Phase 2 greenhouse gas regulations, which require tailpipe CO2 emissions under 579 g/kWh. This study experimentally demonstrates the ability of high fuel stratification gasoline compression ignition (HFS-GCI) to satisfy these emissions standards. Steady-state and transient tests are conducted on a prototype multi-cylinder heavy-duty GCI engine based on a 2010-compliant Cummins ISX15 diesel engine with a urea-SCR aftertreatment system (ATS). Steady-state calibration exercises are undertaken to develop highly fuel-efficient GCI calibration maps at both cold-start and warmed up conditions.
Journal Article

TOC

2024-02-12
Abstract TOC
Journal Article

Use of Artificial Neural Network to Develop Surrogates for Hydrotreated Vegetable Oil with Experimental Validation in Ignition Quality Tester

2024-02-01
Abstract This article presents surrogate mixtures that simulate the physical and chemical properties in the auto-ignition of hydrotreated vegetable oil (HVO). Experimental investigation was conducted in the Ignition Quality Tester (IQT) to validate the auto-ignition properties with respect to those of the target fuel. The surrogate development approach is assisted by artificial neural network (ANN) embedded in MATLAB optimization function. Aspen HYSYS is used to calculate the key physical and chemical properties of hundreds of mixtures of representative components, mainly alkanes—the dominant components of HVO, to train the learning algorithm. Binary and ternary mixtures are developed and validated in the IQT. The target properties include the derived cetane number (DCN), density, viscosity, surface tension, molecular weight, and volatility represented by the distillation curve. The developed surrogates match the target fuel in terms of ignition delay and DCN within 6% error range.
Journal Article

Research on Improving the Efficiency of Centrifugal Pump Using the Different Vane Surfaces of Bearings

2024-01-29
Abstract With the use of the stepped surface of the friction pairs of the stepped bearings (SB) in the high-speed centrifugal pumps, its liquid film thickness is suddenly changed and it was discontinuously distributed in the direction of motion of pump. To ensure the continuity of the liquid film thickness and enhance the lubrication efficiency of the pump, based on the lubrication model of the SB, two other structures of the inclined surfaces [inclined bearings (IB)] and curved surfaces [curved bearings (CB)] used to replace stepped surfaces of the SB are investigated, respectively. Under the same conditions of the minimum thickness of the liquid film and initial dimensions of the sliding friction pairs, the influence of both the thickness ratio (α) of the liquid film and dimension ratio (β) in the direction of motion of SB, IB, and CB on the bearing capacity and friction coefficient of the liquid film are simulated and analyzed, respectively.
X