Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Reducing Fuel Consumption by Using Information from Connected and Automated Vehicle Modules to Optimize Propulsion System Control

2019-04-02
2019-01-1213
Global regulatory targets and customer demand are driving the automotive industry to improve vehicle fuel efficiency. Methods for achieving increased efficiency include improvements in the internal combustion engine and an accelerating shift toward electrification. A key enabler to maximizing the benefit from these new powertrain technologies is proper systems integration work - including developing optimized controls for the propulsion system as a whole. The next step in the evolution of improving the propulsion management system is to make use of available information not typically associated with the powertrain. Advanced driver assistance systems, vehicle connectivity systems and cloud applications can provide information to the propulsion management system that allows a shift from instantaneous optimization of fuel consumption, to optimization over a route. In the current paper, we present initial work from a project being done as part of the DOE ARPA-E NEXTCAR program.
Technical Paper

Mission-based Design Space Exploration for Powertrain Electrification of Series Plugin Hybrid Electric Delivery Truck

2018-04-03
2018-01-1027
Hybrid electric vehicles (HEV) are essential for reducing fuel consumption and emissions. However, when analyzing different segments of the transportation industry, for example, public transportation or different sizes of delivery trucks and how the HEV are used, it is clear that one powertrain may not be optimal in all situations. Choosing a hybrid powertrain architecture and proper component sizes for different applications is an important task to find the optimal trade-off between fuel economy, drivability, and vehicle cost. However, exploring and evaluating all possible architectures and component sizes is a time-consuming task. A search algorithm, using Gaussian Processes, is proposed that simultaneously explores multiple architecture options, to identify the Pareto-optimal solutions.
Technical Paper

Structural Analysis Based Sensor Placement for Diagnosis of Clutch Faults in Automatic Transmissions

2018-04-03
2018-01-1357
This paper describes a systematic approach to identify the best sensor combination by performing sensor placement analysis to detect and isolate clutch stuck-off faults in Automatic Transmissions (AT) based on structural analysis. When an engaged clutch in the AT loses pressure during operation, it is classified as a clutch stuck-off fault. AT can enter in neutral state because of these faults; causing loss of power at wheels. Identifying the sensors to detect and isolate these faults is important in the early stage of the AT development. A universal approach to develop a structural model of an AT is presented based on the kinematic relationships of the planetary gear set elements. Sensor placement analysis is then performed to determine the sensor locations to detect and isolate the clutch stuck-off faults using speed sensors and clutch pressure sensors. The proposed approach is then applied to a 10-Speed AT to demonstrate its effectiveness.
Technical Paper

Motor Resolver Fault Diagnosis for AWD EV based on Structural Analysis

2018-04-03
2018-01-1354
Electric vehicles (EVs) and hybrid electric vehicles (HEVs) are getting more attention in the automotive industry with the technology improvement and increasing focus on fuel economy. For EVs and HEVs, especially all-wheel drive (AWD) EVs with two electric motors powering front and rear axles separately, an accurate motor speed measurement through resolver is significant for vehicle performance and drivability requirement, subject to resolver faults including amplitude imbalance, quadrature imperfection and reference phase shift. This paper proposes a diagnostic scheme for the specific type of resolver fault, amplitude imbalance, in AWD EVs. Based on structural analysis, the vehicle structure is analyzed considering the vehicle architecture and the sensor setup. Different vehicle drive scenarios are studied for designing diagnostic decision logic. The residuals are designed in accordance with the results of structural analysis and the diagnostic decision logic.
Technical Paper

Plant Modeling and Software Verification for a Plug-in Hybrid Electric Vehicle in the EcoCAR 2 Competition

2015-04-14
2015-01-1229
The EcoCAR 2: Plugging into the Future team at The Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 44 miles of all-electric range. The vehicle features an 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes. This is made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 50 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This paper details three years of modeling and simulation development for the OSU EcoCAR 2 vehicle. Included in this paper are the processes for developing simulation platform and model requirements, plant model and soft ECU development, test development and validation, automated regression testing, and controls and calibration optimization.
Technical Paper

Refinement of a Parallel-Series PHEV for Year 3 of the EcoCAR 2 Competition

2014-10-13
2014-01-2908
The EcoCAR 2 team at the Ohio State University has designed an extended-range electric vehicle capable of 44 miles all-electric range, which features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes made possible by a 1.8-L ethanol (E85) engine and a 6-speed automated manual transmission. This vehicle is designed to reduce fuel consumption, with a utility factor weighted fuel economy of 50 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report documents the team's refinement work on the vehicle during Year 3 of the competition, including vehicle improvements, control strategy calibration and dynamic vehicle testing, culminating in a 99% buy off vehicle that meets the goals set forth by the team. This effort was made possible through support from the U.S. Department of Energy, General Motors, The Ohio State University, and numerous competition and local sponsors.
Journal Article

Development of a Dynamic Driveline Model for a Parallel-Series PHEV

2014-04-01
2014-01-1920
This paper describes the development and experimental validation of a Plug-in Hybrid Electric Vehicle (PHEV) dynamic simulator that enables development, testing, and calibration of a traction control strategy. EcoCAR 2 is a three-year competition between fifteen North American universities, sponsored by the Department of Energy and General Motors that challenges students to redesign a Chevrolet Malibu to have increased fuel economy and decreased emissions while maintaining safety, performance, and consumer acceptability. The dynamic model is developed specifically for the Ohio State University EcoCAR 2 Team vehicle with a series-parallel PHEV architecture. This architecture features, in the front of the vehicle, an ICE separated from an automated manual transmission with a clutch as well as an electric machine coupled via a belt directly to the input of the transmission. The rear powertrain features another electric machine coupled to a fixed ratio gearbox connected to the wheels.
Technical Paper

Fabrication of a Parallel-Series PHEV for the EcoCAR 2 Competition

2013-10-14
2013-01-2491
The EcoCAR 2: Plugging into the Future team at the Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 50 miles of all-electric range. The vehicle features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes. This is made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 51 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report details the fabrication and control implementation process followed by the Ohio State team during Year 2 of the competition. The fabrication process includes finalizing designs based on identified requirements, building and assembling components, and performing extensive validation testing on the mechanical, electrical and control systems.
Journal Article

Adaptive Energy Management Strategy Calibration in PHEVs Based on a Sensitivity Study

2013-09-08
2013-24-0074
This paper presents a sensitivity analysis-based study aimed at robustly calibrating the parameters of an adaptive energy management strategy designed for a Plugin Hybrid Electric Vehicle (PHEV). The supervisory control is developed from the Pontryagin's Minimum Principle (PMP) approach and applied to a model of a GM Chevrolet Volt vehicle. The proposed controller aims at minimizing the fuel consumption of the vehicle over a given driving mission, by achieving a blended discharge strategy over the entire cycle. The calibration study is conducted over a wide set of driving conditions and it generates a look-up table and two constant values for the three controller parameters to be used in the in-vehicle implementation. Finally, the calibrated adaptive control strategy is validated against real driving cycles showing the effectiveness of the calibration approach.
Journal Article

Design of a Parallel-Series PHEV for the EcoCAR 2 Competition

2012-09-10
2012-01-1762
The EcoCAR 2: Plugging into the Future team at the Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 50 miles of all-electric range. The vehicle features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 75 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report details the rigorous design process followed by the Ohio State team during Year 1 of the competition. The design process includes identifying the team customer's needs and wants, selecting an overall vehicle architecture and completing detailed design work on the mechanical, electrical and control systems. This effort was made possible through support from the U.S.
Technical Paper

Effect of Traffic, Road and Weather Information on PHEV Energy Management

2011-09-11
2011-24-0162
Energy management plays a key role in achieving higher fuel economy for plug-in hybrid electric vehicle (PHEV) technology; the state of charge (SOC) profile of the battery during the entire driving trip determines the electric energy usage, thus determining the fuel consumed. The energy management algorithm should be designed to meet all driving scenarios while achieving the best possible fuel economy. The knowledge of the power requirement during a driving trip is necessary to achieve the best fuel economy results; performance of the energy management algorithm is closely related to the amount of information available in the form of road grade, velocity profiles, trip distance, weather characteristics and other exogenous factors. Intelligent transportation systems (ITS) allow vehicles to communicate with one another and the infrastructure to collect data about surrounding, and forecast the expected events, e.g., traffic condition, turns, road grade, and weather forecast.
Technical Paper

A Statistical Approach to Assess the Impact of Road Events on PHEV Performance using Real World Data

2011-04-12
2011-01-0875
Plug in hybrid electric vehicles (PHEVs) have gained interest over last decade due to their increased fuel economy and ability to displace some petroleum fuel with electricity from power grid. Given the complexity of this vehicle powertrain, the energy management plays a key role in providing higher fuel economy. The energy management algorithm on PHEVs performs the same task as a hybrid vehicle energy management but it has more freedom in utilizing the battery energy due to the larger battery capacity and ability to be recharged from the power grid. The state of charge (SOC) profile of the battery during the entire driving trip determines the electric energy usage, thus determining overall fuel consumption.
Journal Article

An Iterative Markov Chain Approach for Generating Vehicle Driving Cycles

2011-04-12
2011-01-0880
For simulation and analysis of vehicles there is a need to have a means of generating drive cycles which have properties similar to real world driving. A method is presented which uses measured vehicle speed from a number of vehicles to generate a Markov chain model. This Markov chain model is capable of generating drive cycles which match the statistics of the original data set. This Markov model is then used in an iterative fashion to generate drive cycles which match constraints imposed by the user. These constraints could include factors such number of stops, total distance, average speed, or maximum speed. In this paper, systematic analysis was done for a PHEV fleet which consists of 9 PHEVs that were instrumented using data loggers for a period of approximately two years. Statistical analysis using principal component analysis and a clustering approach was carried out for the real world velocity profiles.
Technical Paper

Comparative study of different control strategies for Plug-In Hybrid Electric Vehicles

2009-09-13
2009-24-0071
Plug-In Hybrid Vehicles (PHEVs) represent the middle point between Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs), thus combining benefits of the two architectures. PHEVs can achieve very high fuel economy while preserving full functionality of hybrids - long driving range, easy refueling, lower emissions etc. These advantages come at an expense of added complexity in terms of available fuel. The PHEV battery is recharged both though regenerative braking and directly by the grid thus adding extra dimension to the control problem. Along with the minimization of the fuel consumption, the amount of electricity taken from the power grid should be also considered, therefore the electricity generation mix and price become additional parameters that should be included in the cost function.
Journal Article

Design and Validation of a Control-Oriented Model of a Diesel Engine with Two-Stage Turbocharger

2009-09-13
2009-24-0122
Two-stage turbochargers are a recent solution to improve engine performance. The large flexibility of these systems, able to operate in different modes, can determine a reduction of the turbo-lag phenomenon and improve the engine tuning. However, the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization to maximize the benefits of this technology. In addition, the design and calibration of the control system is particularly complex. The transitioning between single stage and two-stage operations poses further control issues. In this scenario a model-based approach could be a convenient and effective solution to investigate optimization, calibration and control issues, provided the developed models retain high accuracy, limited calibration effort and the ability to run in real time.
Journal Article

Energy, Economical and Environmental Analysis of Plug-In Hybrids Electric Vehicles Based on Common Driving Cycles

2009-09-13
2009-24-0062
The objective draw by this project is to develop tools for Plug-in Hybrid Electric Vehicle (PHEV) design, energy analysis and energy management, with the aim of analyzing the effect of design, driving cycles, charging frequency and energy management on performance, fuel economy, range and battery life. A Chevrolet Equinox fueled by bio diesel B20 has been hybridized at the Center for Automotive Research (CAR), at The Ohio State University. The vehicle model has been developed in Matlab/Simulink environment, and validated based on laboratory and test. The PHEV battery pack has been modeled starting from Li-Ion batteries experimental data and then implemented into the simulator. In order to simulate “real world” scenarios, custom driving cycles/typical days were identified starting from average driving statistics and well-known cycles.
Technical Paper

Application of Model-Based Design Techniques for the Control Development and Optimization of a Hybrid-Electric Vehicle

2009-04-20
2009-01-0143
Model-based design is a collection of practices in which a system model is at the center of the development process, from requirements definition and system design to implementation and testing. This approach provides a number of benefits such as reducing development time and cost, improving product quality, and generating a more reliable final product through the use of computer models for system verification and testing. Model-based design is particularly useful in automotive control applications where ease of calibration and reliability are critical parameters. A novel application of the model-based design approach is demonstrated by The Ohio State University (OSU) student team as part of the Challenge X advanced vehicle development competition. In 2008, the team participated in the final year of the competition with a highly refined hybrid-electric vehicle (HEV) that uses a through-the-road parallel architecture.
Technical Paper

An Improved Design of a Vehicle Based Off-Road Terrain Profile Measurement System

2008-10-07
2008-01-2655
This paper discusses an improved design of a vehicle-based mobile off-road terrain profile measurement system. The proposed system includes an apparatus of sensors and on-board data acquisition hardware, equipped on a platform vehicle used to measure and record the relevant data while the vehicle travels through the off-road or terrain surface to be surveyed. A unique post-processing algorithm is then used to derive the elevation profile based on the collected data. The derived elevation profile data could be used to characterize the roughness of an off-road testing course or perform a general geographical survey or mapping. The major technical issue addressed in this system is to eliminate the effect of platform vehicle vibration on sensor measurement which if left unaddressed will result in large measurement error due to high amplitude pitch and roll movements of the platform vehicle.
Technical Paper

Design and Control of Commuter Plug-In FC Hybrid Vehicle

2007-09-16
2007-24-0079
Strong dependency on crude oil in most areas of modern transportation needs lead into a significant consumption of petroleum resources over many decades. In order to maximize the effective use of remaining resources, various types of powertrain topologies, such as hybrid configurations among fuel cell, electric battery as well as conventional IC engine, have been proposed and tested out for number of vehicle classes including a personal commuting vehicle. In this paper the vehicle parameters are based on a typical commercial sub-compact vehicle (FIAT Panda) and energy needs are estimated on the sized powertrain. The main control approach is divided in two categories: off-line global optimization with dynamic programming (DP, not implementable in real time), and on-line Proportional and Feed-Forward with PI controllers. The proposed control approaches are developed both for charge-sustaining and charge-depleting mode and sample results are shown and compared.
Technical Paper

Model Based Fault Diagnosis for Engine under Speed Control

2007-04-16
2007-01-0775
An appropriate fault diagnosis and Isolation (FDI) strategy is very useful to prevent system failure. In this paper, a model-based fault diagnosis strategy is developed for an internal combustion engine (ICE) under speed control. Engine throttle fault and the manifold pressure sensor fault are detected and isolated. A nonlinear observer based residual generation approach is proposed. Manifold pressure and throttle are observed. Fault codes are designed with redundancy to prevent bit error. Performance of fault diagnosis strategy has been evaluated with simulations.
X