Refine Your Search

Search Results

Technical Paper

Investigation and Improvement of a Bouncing Torsional Vibration in Automotive Dual Mass Flywheel by Combining Testing and 1D CAE Modeling Approach

2019-06-05
2019-01-1556
Dual mass flywheel (DMF) is a well-known isolation system for vehicle drivetrain. DMF has two typical elastic energy storage systems: long travel arc springs and in-series spring units (including two or more springs) and sliding shoes connected in series. DMF has such complex nonlinear characteristics as torque-dependent torsional stiffness and rotational speed-dependent hysteresis friction due to its dependency of centrifugal force that is applied to components and radial force of springs. Because of this complexity, sub-harmonic vibration (SHV) may occur under certain circumstances, such as under light-load and high-rotational conditions. In general, since SHV’s frequency is 1/2 or 1/3 of the engine’s combustion frequency and may cause human discomfort, DMF must be designed robust against such nonlinear vibration. In this paper to reduce the SHV occurrence and to show a more robust design indicator, the SHV causing the mechanism is researched by testing and 1D CAE modeling.
Technical Paper

Application of Transfer Path Analysis (TPA) to a Mechanical Structure with a Variety of Transfer Paths

2016-09-27
2016-01-8101
In a typical mechanical product such as an automobile or construction machinery, it is important to identify deformation modes, for which experiments and analyses can result in significant improvements. It is also important to consider how to improve the structure with high rigidity by using a technique such as the strain energy method in conventional design and development. However, the abovementioned method often generates conflicting results with regard to weight saving and cost reduction of development requirements. Transfer path analysis (TPA) using the finite element method (FEM) is an effective way to reduce noise and vibration in the automobile with respect to these issues. TPA can reveal the transfer path from the input to the response of the output point and the contribution of the path, and to efficiently consider improved responses.
Technical Paper

Placement Technique of Measurement Points for Inverse Acoustic Analysis

2015-11-17
2015-32-0747
This paper describes a measurement points' placement technique for the sound source identification using inverse acoustic analysis. In order to reduce noise in NVH problem for various kinds of machines including small size engine, it is necessary to identify the sound source. The inverse acoustic analysis is a technique that is effective for the sound source identification.[1,2] The inverse acoustic analysis identifies a surface vibration of an object by measuring the radiated sound and solving the inverse problem. Nakano et al. researched about the location of sound pressure measurement points for accurate improvement.[3] They clarified that the sound pressure measurement points on the concentric circle gave more accurate surface vibration than the measurement points on the square lattice.
Technical Paper

Comparison Method of Input Powers and Contribution Rates between Statistical Energy Analysis and Transfer Path Analysis for Small Power Generator's Enclosure

2015-11-17
2015-32-0774
This paper describes the comparison method of input powers and contribution rates from vibration sources to a small power generator's enclosure represented by a thin-walled plane structure determined by Statistical Energy Analysis (SEA) and Transfer Path Analysis (TPA). In the pursuit of efficient ways to analyze the design dynamics of small machines such as a small power generator, it is important to identify information and dynamics of input power sources during machine operation. SEA and TPA are two of the most efficient methods in identifying the dynamics of a structure during machine operation. SEA is used for systems with many resonant modes, and predicted results are based on space averages. On the other hand, TPA is based on estimation of a frequency response function between an excitation point and a response point. In this study, we proposed a method to compare SEA evaluated by power injection method and TPA evaluated by matrix inversion method.
Technical Paper

Natural Frequency Analysis of Tire Vibration Using a Thin Cylindrical Shell Model

2015-06-15
2015-01-2198
Early studies on the tire vibration characteristics of road noise focused on radial modes of vibration because these modes are dominant in vertical spindle force. However, recent studies of Noise, Vibration and Harshness (NVH) prediction have suggested that tire modeling not only of radial modes, but also of lateral vibration, including lateral translational and lateral bending modes, affect interior noise. Thus, it is important to construct tire dynamic models with few degrees of freedom for whole-vehicle analysis of NVH performance. Existing tire dynamics model can't express tire lateral vibrations. This paper presents a new approach for tire vibration analysis below 200Hz, and a formula for tire natural frequencies. First, a tire dynamic model is developed based on the thin cylindrical shell theory. Kinetic and potential energies are derived. Mode shape function is also derived by the assumption of inextensility in the neutral of the tread ring.
Journal Article

Dynamic Analysis of an Excavator During Digging Operation

2013-09-24
2013-01-2410
Researches for automation of hydraulic excavators have been conducted for laborsaving, improved efficiency of operations and increased worker's safety improvement. Authors' final goal is to develop automatic digging system which can realize the high efficiency. Therefore, it is thought that appropriate digging control algorithm is important for the automation. For this goal, this paper shows a dynamics model of the backhoe excavator and simulations using such models. Detailed dynamic models are needed from the point of view of the control engineering. Authors evaluate effectiveness of automatic digging algorithm by simulation models. In this research, the linkage mechanism which contains the closed loops is modeled based on the Newton-Euler formulation, where motion equation is derived. Moreover, we apply a soil model for simulation, based on the two dimensional distinct element method (DEM), in order to reproduce reaction force from grounds.
Journal Article

Digging Trajectory Optimization by Soil Models and Dynamics Models of Excavator

2013-09-24
2013-01-2411
Researches for automated construction machinery have been conducted for labor-saving, improved work efficiency and worker's safety, where a tracking control function was proposed as one of the key control system strategies for highly automated productive hydraulic excavators. An optimized digging trajectory that assures as much soils scooped as possible and less energy consumption is critical for an automated hydraulic excavator to improve work efficiency. Simulation models that we used to seek an optimized digging trajectory in this study consist of soil models and front linkage models of a hydraulic excavator. We developed two types of soil models. One is called wedge models used to calculate reaction forces from soils acting on a bucket during digging operation, based on the earth pressure theory. The other is called Distinct Element Method (DEM) model used to analyze soil behaviors and estimate amounts of soils scooped and reaction forces quantitatively.
Journal Article

Vibration Transmission Analysis of Automotive Body for Reduction of Booming Noise

2011-05-17
2011-01-1691
This paper presents progressive techniques based on the previous SAE papers [1], [2] for vibration transmission analysis (VTA) on finite element (FE) model using Transfer Path Analysis (TPA). The techniques are: 1) a contribution calculation technique for structure with manifold and continuous transfer paths: 2) a visualization technique of the influence degree for efficient derivation of measures for response reduction. In VTA, influence degree of each DOF is calculated based on TPA. In order to understand characteristics of vibration transmission (VT) easily and visually by engineers, magnitude of influence degree is expressed by replacement to magnitude of displacement in the diagram of FE vibration shape. This visualization technique is applied to an automotive body structure. The proposed techniques are applied to automotive body structure consisting of members and panels. The members are such as pillars, cross members and side members, which are the main VT paths.
Technical Paper

Examination of Digging Efficiency Considering Force Feedback for Hydraulic Excavators

2010-10-05
2010-01-1923
A high performance digging algorithm for a hydraulic excavator has not been established because the relationship between digging parameters and digging performance is complex. An examination process for a high-performance digging algorithm is proposed. In this paper, the digging efficiency is defined as the soil volume derived by the applied energy to drive the bucket in order to evaluate digging performance. The digging algorithm, which we study for high digging efficiency, decreases the reaction force to the bucket from the soil by moving the bucket upward when the reaction force exceeds a threshold during digging. Digging tests are performed with a miniature test device and a simulation model by two-dimensional distinct element methods (2D-DEM). The device and the simulation assess the effectiveness of the digging algorithm. It is quantitatively shown that the digging performance obtained by the feedback digging system is improved to prevent growing of reaction force.
Technical Paper

Cooperative Steer Control on Motorcycle between Rider and Active Support Torque

2009-11-03
2009-32-0060
In this research, we aim at the construction of a steering cooperation-type front-wheel steering control system to reduce the rider's steering load by stabilizing the behavior of the motorcycle when turbulence in the direction of a roll occurs during low-speed driving. Finally, a front-wheel steering control system that considers cooperation with a rider's steering based on the experimental result is constructed, and the utility is verified by simulation.
Technical Paper

A Measures Planning Method by Analysis of Contribution of the Vibration Transfer Path

2009-05-19
2009-01-2197
This paper describes a proposal of techniques on Transfer Path Analysis (TPA) to analyze transmission of vibration among the components in a complex structure. This proposal is evolved from the previous one [1] in the dimension which dominates the quality of the analysis in automotive body structure by TPA. The proper coordinate transformation was introduced to resolve the troublesome process on the application of the body structure in the previous proposal. The complications are caused by the treatment with a lot of transfer functions and transmitted forces at the conjunctions that are complexly assembled with many adjacent nodes. Dimension of the analytical region is expanded from two to three in this study. That is, from the cross section of interface of components to the structure itself where the vibration transmits between two components.
Technical Paper

Prediction of Spindle Force Using Measured Road Forces on Rolling Tire

2009-05-19
2009-01-2107
Improvement of vehicle interior noise is desired in recent years in the modern world of the demand of low weight, good fuel economy and offering technical advantages strongly. The dynamic force transmission of rolling tires from the road surface to the spindles is a critical factor in vehicle interior noise. We focus on structure-borne noise transferred through the spindle. It is necessary for effort of the effective tire/road noise reduction to predict spindle force excited by tire/road contact. The major issues in predicting spindle forces are to clarify the distribution of road forces and how to input on the simulation model. Therefore, it is important that road forces are measured accurately on the rolling tire. First, the dynamic road forces on the rolling tire are measured by using the tri-axial force sensor directly. In efforts to reduce interior noise due to structure-borne noise, it is necessary to predict spindle forces excited by the tire/road contact.
Technical Paper

Disturbance Rejection Control in Motorcycle that Considers Cooperativeness with the Rider’s Driving Operation

2008-09-09
2008-32-0055
It’ll be expected that tandem riders increase in the future. So, there is a need to improve the motorcycle stability of tandem riding from the perspectives of safety and comfort. In this research, we focus on tandem riding at low speed because the motorcycle especially becomes unstable. In order to improve the stability of a motorcycle after disturbance is input by the passenger’s posture change, we design a front wheel steer control system that assists the rider’s driving operation. And we simulate it. It is necessary to consider cooperation with the rider’s driving operation. In this study, as a means to consider the cooperative control of the man-machine system, the fuzzy logic was applied to this system.
Technical Paper

Application of Inverse Boundary Element Method to Vibration Identification of Co-generation System

2007-10-30
2007-32-0104
This paper describes the application of inverse boundary element method (Inverse BEM) to vibration identification on surface of Co-generation System enclosure. This method is a kind of matrix inversion using singular value decomposition. Therefore it is significant to select proper tolerance in order to identify vibration accurately. In this study, the tolerance selection method is proposed. First step, the surface velocity of numerical model with unit input was obtained by Finite Element Method. The sound pressure around the model was obtained by BEM. Second step, random noise was mixed with obtained sound pressure. Third step, by using Inverse BEM, the surface velocity was identified from the sound pressure with noise. Next, the error between the identified velocity and the velocity obtained by FEM were evaluated and the tolerance is selected to minimize the error.
Technical Paper

Mode Classification Analysis using Mutual Relationship between Dynamics of Automobile Whole-Body and Components

2007-08-05
2007-01-3500
Current simulation of Noise, Vibration and Harshness (NVH) using Computer Aided Engineering (CAE) often uses a large DOF and detailed finite element model along with improvement of CAE technology and computational performance. By using a detailed model, predictions of precise vibration characteristics become possible. However, the number of eigenmodes in the target frequency range increases and engineers require a lot of time to examine eigenmodes and establish countermeasures. In this paper, a practical method of efficient and effective analysis by classifying target eigenmodes into a small number of groups is proposed. The classification is executed based on the relation between the dynamic characteristics of the entire automotive body structure and substructures.
Technical Paper

Dynamic Analysis of Rolling Tire Using Force Sensor and Transfer Path Identification

2007-05-15
2007-01-2254
The demand for quieter vehicle interiors increases year after year. The dynamic force transmission of rolling tires from the road surface to the spindles is a critical factor in vehicle interior noise. We investigated the dynamic force transmission of a rolling tire as it relates to reducing vehicle interior noise. A test with a tire rolling over a cleat was conducted in order to measure the road forces and the spindle forces. The transfer function of the rolling tire was identified from the experimental results by applying multi dimensional spectral analysis. In addition, Computer Aided Engineering (CAE) technology has advanced recently. This enables prediction of spindle forces early in the design stage. One of the most important issues in predicting spindle forces accurately is to clarify the distribution of road forces. This paper also describes the distribution of the dynamic road forces of the rolling tire.
Technical Paper

Application of Multi-objective Optimization to Exhaust Silencer Design

2007-05-15
2007-01-2210
This paper describes how use of multi-objective optimization of pulsating noise and backpressure improved an exhaust silencer for diesel drive equipment. Low frequency pulsating noise and backpressure were simultaneously predicted using one-dimensional fluid dynamics and acoustic analysis by BEM. In addition, an experiment was done to investigate the relation between high frequency noise including flow-induced noise and the dimensions of perforations in silencer pipes. Finally, a prototype of the exhaust silencer was built and examined in order to confirm the effects of these design methods mentioned. As predicted, exhaust noise was reduced without increasing backpressure.
Technical Paper

Optimization of Profile fo r Reduction of Piston Slap Excitation

2004-09-27
2004-32-0022
This paper presents an analytical model for the prediction of piston secondary motion and the vibration due to piston slap. For the modeling of piston slap phenomenon, cylinder liner is modeled as a several spring-mass system that are connected by modal characteristics, and lubricant film between the piston and the cylinder is modeled as reaction force vectors which excite resonant mode of them. By comparing experimental results and analytical ones, the validity of the proposed model has been confirmed. The optimization of the piston skirt profile is also carried out with the analytical model, and it is confirmed that the round shape of the lower part of piston skirt is effective for the reduction of piston slap excitation.
Technical Paper

A Stiffness Optimization Procedure for Automobile Rubber Mounts

2001-04-30
2001-01-1445
Generally, it is well known that road noise generated by vibration from automobile tires and suspensions can be reduced by changing the stiffness of the rubber mounts installed in the suspension systems. Such stiffness, however, is rarely changed to avoid riding discomfort and so on. In this paper, a stiffness optimization method for suspension system rubber mounts that reduces road noise, and improves riding comfort as well, is presented. In the process, Road Noise Contribution Analysis (RNCA) is applied to the target vehicle to specify the major factors of road noise. Furthermore, the suspension system of the vehicle is investigated by Sensitivity Analysis using Measured FRF data (SAMF) to identify the optimal stiffness combination of rubber mounts. As a result, an effective stiffness combination of two mounts is specified to reduce road noise and to improve riding comfort.
Technical Paper

Reduction of Piston Slap Excitation with Optimization of Piston Profile

2000-06-12
2000-05-0317
This paper presents the analytical method of piston secondary motion with an experimental verification for a small gasoline engine. To analyze the vibration, a modeling of the piston secondary motion is carried out and numerical simulation is performed. In this method, both dynamic characteristics of the part of piston skirt and cylinder liner are taken into consideration. As compared the simulated results with the experimental results, the validity of presented model has been confirmed and this numerical model is effective to comprehend the piston slap secondary motion.
X