Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Experimental Determination of Local H/C Ratio and Hydrogen-Particulate

1982-02-01
820362
An intermittent sampling valve was used to investigate local fuel H/C ratio and species concentrations in an operating DI diesel engine. Additionally, predictions of carbon and hydrogen originating from particulates and nonmethane hydrocarbons (carbon and hydrogen remainders) were made by calculation. Sample H/C ratio was used to assess local fuel phase as gaseous or liquid. Evidence of intermediate species quenching in the lean region between spray plumes was found under low swirl. Reduction in the rate of penetration under high swirl may account for the observed loss in efficiency under this condition.
Technical Paper

Air Velocity Measurements in Engines by Vortex Shedding

1974-02-01
741057
This paper describes a new application of Karman vortex shedding frequency as a velocity sensor in a motored internal combustion engine cylinder. The probe design, experimental setup and data reduction procedures are described. The quality of data obtained depends strongly on the relative frequency distribution of the free-stream turbulence and of the vortex shedding induced by the vortex generator. The instrument was evaluated on a CFR engine equipped with a shrouded intake valve. The results are presented in terms of the airswirl ratio at several selected crank angle degrees versus engine speed. The limitations of the device were also demonstrated in L-head engine tests.
Technical Paper

An Experimental Determination of the Instantaneous Potential Radiant Heat Transfer Within an Operating Diesel Engine

1972-02-01
720022
An instrument was developed to measure absolute monochromatic infrared emission rates within an operating diesel engine. The instrument and data reduction system were developed for use in obtaining potential instantaneous rates of radiant heat transfer within an operating engine. Data are presented for variations of: engine speed, fuel-air ratio, fuel injection timing, intake air pressure, fuel injector nozzle spray patterns, fuel cetane numbers, fuel family, and fuel additives (tetraeythl lead and amyl nitrate). Also presented is an empirical correlation for instantaneous radiant heat transfer rates and some conclusions regarding radiant emission sources within the engine and their relationships to combustion processes.
X