Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Approach for an Assistance System for E-Bikes to Implement Rider-Adaptive Support

2024-07-02
2024-01-2979
When riding an e-bike, riders are faced with the question of whether there is enough energy left in the battery to reach the destination with the desired level of support. E-bike users therefore have an existential range anxiety. Specifically, this describes the fear that the battery charge will be exhausted before there is an opportunity to recharge it and that it will no longer be possible to use the electric support. However, e-bike riders have so far had to decide for themselves whether the available battery charge is sufficient for riding the planned route or whether the desired destination can be reached. In this context, the challenge is to decide how much support can be used so that an appropriate amount of effort can be achieved for the entire journey. In order to assist e-bike riders with this problem, the objective of this paper is to present an approach towards an assistance system that provides rider-adaptive support over the entire journey of a defined route.
Technical Paper

Sustainable Propulsion in a Post-Fossil Energy World: Life-Cycle Assessment of Renewable Fuel and Electrified Propulsion Concepts

2024-07-02
2024-01-3013
Faced with one of the greatest challenges of humanity – climate change – the European Union has set out a strategy to achieve climate neutrality by 2050 as part of the European Green Deal. To date, extensive research has been conducted on the CO2 life cycle analysis of mobile propulsion systems. However, achieving absolute net-zero CO2 emissions requires the adjustment of the relevant key performance indicators for the development of mobile propulsion systems. In this context, research is presented that examines the ecological and economic sustainability impacts of a hydrogen-fueled mild hybrid vehicle, a hydrogen-fueled 48V hybrid vehicle, a methanol-fueled 400V hybrid vehicle, a methanol-to-gasoline-fueled plug-in hybrid vehicle, a battery electric vehicle, and a fuel cell electric vehicle. For this purpose, a combined Life-Cycle Assessment (LCA) and Life-Cycle Cost Assessment was performed for the different propulsion concepts.
Technical Paper

Optimization-Based Battery Thermal Management for Improved Regenerative Braking in CEP Vehicles

2024-07-02
2024-01-2974
The courier express parcel service industry (CEP industry) has experienced significant changes in the recent years due to increasing parcel volume. At the same time, the electrification of the vehicle fleets poses additional challenges. A major advantage of battery electric CEP vehicles compared to internal combustion engine vehicles is the ability to regenerate the kinetic energy of the vehicle in the frequent deceleration phases during parcel delivery. If the battery is cold the maximum recuperation power of the powertrain is limited by a reduced chemical reaction rate inside the battery. In general, the maximum charging power of the battery depends on the state of charge and the battery temperature. Due to the low power demand for driving during CEP operation, the battery self-heating is comparably low under cold ambient conditions. Without active conditioning of the battery, potential regenerative energy is lost as a result of the cold battery.
Technical Paper

Next-gen battery strategies 2027+: Potentials and challenges for future battery designs and diversification in product portfolios to serve a large bandwidth of market applications

2024-07-02
2024-01-3018
The pace of innovations in battery development is revolutionizing the landscape and opportunities for energy storage applications leading to a stronger market segmentation enabling a better suitability to fulfill specific application requirements. For automotive applications, several approaches to increase energy densities, to improve fast charging performance, and to reduce cost on a pack level are considered. Among them, a promising example is the direct integration of battery cells into the battery pack (Cell-to-pack; CTP) or vehicle (Cell-to-chassis, CTC) to increase energy densities and to reduce costs, as already commercialized by Tesla, CATL and others. In the pack development, especially Asian players are one of the frontrunners, where e.g., hybrid cell battery systems with a mixture of cells with different cathode chemistries as introduced by NIO, are experiencing a high interest of the market.
Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
Technical Paper

Development of a Soft-Actor Critic Reinforcement Learning Algorithm for the Energy Management of a Hybrid Electric Vehicle

2024-06-12
2024-37-0011
In recent years, the urgent need to fully exploit the fuel economy potential of the Electrified Vehicles (xEVs) through the optimal design of their Energy Management System (EMS) have led to an increasing interest in Machine Learning (ML) techniques. Among them, Reinforcement Learning (RL) seems to be one of the most promising approaches thanks to its peculiar structure, in which an agent is able to learn the optimal control strategy through the feedback received by a direct interaction with the environment. Therefore, in this study, a new Soft Actor-Critic agent (SAC), which exploits a stochastic policy, was implemented on a digital twin of a state-of-the-art diesel Plug-in Hybrid Electric Vehicle (PHEV) available on the European market. The SAC agent was trained to enhance the fuel economy of the PHEV while guaranteeing its battery charge sustainability.
Technical Paper

Exploring methanol and naphtha as alternative fuels for a hybrid-ICE battery-driven light-duty vehicle

2024-06-12
2024-37-0021
In pursuing sustainable automotive technologies, exploring alternative fuels for hybrid vehicles is crucial in reducing environmental impact and aligning with global carbon emission reduction goals. This work compares methanol and naphtha as potential suitable alternative fuels for running in a battery-driven light-duty hybrid vehicle by comparing their performance with the diesel baseline engine. This work employs a 0-D vehicle simulation model within the GT-Power suite to replicate vehicle dynamics under the Worldwide Harmonized Light Vehicles Test Cycle (WLTC). The vehicle choice enables the assessment of a delivery application scenario using distinct payload capacities: 0%, 25%, 50%, and 100%. The model is fed with engine maps derived from previous experimental work conducted in the same engine, in which a full calibration was obtained that ensures the engine's operability in a wide region of rotational speed and loads.
Technical Paper

Comparing the NVH behaviour of an innovative steel-wood hybrid battery housing design to an all aluminium design

2024-06-12
2024-01-2949
The production of electric vehicles (EVs) has a significant environmental impact, with up to 50 % of their lifetime greenhouse gas potential attributed to manufacturing processes. The use of sustainable materials in EV design is therefore crucial for reducing their overall carbon footprint. Wood laminates have emerged as a promising alternative due to their renewable nature. Additionally, wood-based materials offer unique damping properties that can contribute to improved Noise, Vibration, and Harshness (NVH) characteristics. In comparison to conventional materials such as aluminum, ply wood structures exhibit beneficial damping properties. The loss factor of plywood structures with a thickness below 20 mm ranges from 0.013 to 0.032. Comparable aluminum structures however exhibit only a fraction of this loss factor with a range between 0.002 and 0.005.
Technical Paper

Potential of Serial Hybrid Powertrain Concepts towards decarbonizing the Off-Highway Machinery

2024-06-12
2024-37-0018
Today’s engines used in Agriculture, Mining and Construction are designed for robustness and cost. Here, the Diesel powertrain is the established mainstream solution, offering long operation times without refueling at any desired power rating. In view of the steps towards Carbon Neutrality by 2050 this segment of the Transportation Sector needs to reduce its CO2 emissions. Currently, the EU and US emissions legislations (EU Stage V / EPA Tier4) do not include a CO2 reduction scheme but is expected to change with the next update towards EU Stage VI / EPA Tier5 coming into effect 2030 and after. Larger power and operation range still require the use of renewable, liquid fuels or hydrogen. The cost-up of such fuels could be counterbalanced by more efficient engines in combination with a hybridized powertrain.
Technical Paper

Experimental and Simulation Study of Zero Flow Impact on Hybrid Vehicle Emissions

2024-06-12
2024-37-0036
Combustion engines in hybrid vehicles turn on and off several times during a typical passenger car trip. Each engine restart may pose a risk of excessive tailpipe emissions in real-drive conditions if the after-treatment system fails to maintain an adequate temperature level during zero flow. In view of the tightening worldwide tailpipe emissions standards and real-world conformity requirements, it is important to detect and resolve such risks via cost-effective engineering tools relying on accurate 3d analysis of the thermal and chemical behavior of exhaust systems. In this work, we present a series of experiments to examine the impact of zero-flow duration on the exhaust system cooling and subsequent emissions risk. We also present a catalyst model calibrated to predict the 3d thermal and chemical behavior under normal and zero flow conditions. Particular emphasis is given to the phenomena of free convection and thermal radiation dominating the heat transfer at zero flow.
Technical Paper

Experimental Assessment of Drop-in Hydrotreated Vegetable Oil (HVO) in a Medium-Duty Diesel Engine for Low-emissions Marine Applications

2024-06-12
2024-37-0023
Nowadays, the push for more ecological low-carbon propulsion systems is high in all mobility sectors, including the recreational or light-commercial boating, where propulsion is usually provided by internal combustion engines derived from road applications. In this work, the effects of replacing conventional fossil-derived B7 diesel with Hydrotreated Vegetable Oil (HVO) were experimentally investigated in a modern Medium-Duty Engine, using the advanced biofuel as drop-in and testing according to the ISO 8178 marine standard. The compounded results showed significant benefits in terms of NOx, Soot, mass fuel consumption and WTW CO2 thanks to the inner properties of the aromatic-free, hydrogen-rich renewable fuel, with no impact on the engine power and minimal deterioration of the volumetric fuel economy.
Technical Paper

Development of a Hybrid-Electric Medium-HD Demonstrator Vehicle with a Pent-Roof SI Natural Gas Engine

2024-06-12
2024-37-0026
In response to global climate change, there is a widespread push to reduce carbon emissions in the transportation sector. For the difficult to decarbonize heavy-duty (HD) vehicle sector, lower carbon intensity fuels can offer a low-cost, near-term solution for CO2 reduction. The use of natural gas can provide such an alternative for HD vehicles while the increasing availability of renewable natural gas affords the opportunity for much deeper reductions in net-CO2 emissions. With this in consideration, the US National Renewable Energy Laboratory launched the Natural Gas Vehicle Research and Development Project to stimulate advancements in technology and availability of natural gas vehicles. As part of this program, Southwest Research Institute developed a hybrid-electric medium-HD vehicle (class 6) to demonstrate a substantial CO2 reduction over the baseline diesel vehicle and ultra-low NOx emissions.
Technical Paper

A methodology to develop and validate a 75-kWh battery pack model with its cooling system under a real driving cycle.

2024-06-12
2024-37-0012
A major issue of battery electric vehicles (BEV) is optimizing driving range and energy consumption. Under actual driving, transient thermal and electrical performance changes could deteriorate the battery cells and pack. These performances can be investigated and controlled efficiently with a thermal management system (TMS) via model-based development. A complete battery pack contains multiple cells, bricks, and modules with numerous coolant pipes and flow channels. However, such an early modeling stage requires detailed cell geometry and specifications to estimate the thermal and electrochemical energies of the cell, module, and pack. To capture the dynamic performance changes of the LIB pack under real driving cycles, the thermal energy flow between the pack and its TMS must be well predicted. This study presents a BTMS model development and validation method for a 75-kWh battery pack used in mass-production, mid-size battery SUV under WLTC.
Technical Paper

Choosing the Best Lithium Battery Technology in the Hybridization of Ultralight Aircraft

2024-06-12
2024-37-0017
Many research centers and companies in general aviation have been devoting efforts to the electrification of propulsive plants to reduce environmental impact and/or increase safety. Even if the final goal is the elimination of fossil fuels, the limitations of today's battery in terms of energy and power densities suggest the adoption of hybrid-electric solutions that combine the advantages of conventional and electric propulsive systems, namely reduced fuel consumption, high peak power, and increased safety deriving from redundancy. Today, lithium batteries are the best commercial option for the electrification of all means of transportation. However, lithium batteries are a family of technologies that presents a variety of specifications in terms of gravimetric and volumetric energy density, discharge and charge currents, safety, and cost.
Technical Paper

Definition of a rule-based energy management controller for the simulation of a plug-in hybrid vehicle using power and on-board measured data

2024-06-12
2024-37-0016
Vehicle powertrain electrification is considered one of the main measures adopted by vehicle manufacturers to achieve the CO2 emissions targets. Although the development of vehicles with hybrid and plug-in hybrid powertrains is based on existing platforms, the complexity of the system is significantly increased. As a result, the demands of testing during the development and calibration stages is getting significantly higher. To compensate that, high-fidelity simulation models are used as a cost-effective solution. This paper aims to present the methodology followed for the development of a rule-based energy management controller for a plug-in hybrid electric vehicle (PHEV), and to describe the experimental campaign carried out with this passenger car. The controller is implemented in a vehicle simulation model that is parametrized to replicate the operation of the vehicle.
Technical Paper

Hybrid Cooling System for Thermal Management in Electric Aerial Vehicles

2024-06-01
2024-26-0468
Continuous improvements and innovations towards sustainability in the aviation industry has brought interest in electrified aviation. Electric aircrafts have short missions in which the temporal variability of thermal loads are high. Lithium-ion (Li-ion) batteries have emerged as prominent power source candidate for electric aircrafts and Urban Air Mobility (UAM). UAMs and Electric aircrafts have large battery packs with battery capacity ranging in hundreds or thousands of kWh. If the battery is exposed to temperatures outside the optimum range, the life and the performance of the battery reduces drastically. Hence, it is crucial to have a Thermal Management System (TMS) which would reduce the heat load on battery in addition to cabin, and machinery thermal loads. Thermal management can be done through active or passive cooling. Adding a passive cooling system like Phase Change Material (PCM) to the TMS reduces the design maximum thermal loads.
Technical Paper

Simulation and Evaluation of Battery Aging in Electric Hybrid Storage Systems

2024-05-06
2024-01-2903
The extension of traction batteries from electric vehicles with supercapacitors is regularly discussed as a possibility to increase the lifetime of lithium-ion batteries as well as the performance of the vehicle drive. The objective of this work was to validate these assumptions by developing a simulation model. In addition, an economic analysis is performed to qualitatively classify the simulation results. Initially, a hybrid energy storage system consisting of battery and supercapacitor was developed. A semi-active hybrid energy storage topology was selected. Subsequently, the selection of use cases as well as the application-specific definition of load cycles took place. In addition, the control strategy was further developed so that a simulation on lifetime was made possible. The end-of-life of the battery cells was defined, according to the USABC guideline values.
Technical Paper

Model-based Knowledge Management in HV Battery Development

2024-05-06
2024-01-2902
In the dynamic landscape of battery development, the quest for improved energy storage and efficiency has become paramount. The contemporary energy transition, coupled with growing demands for electric vehicles, renewable energy sources, and portable electronic devices, has underscored the critical role that batteries play in our modern world. To navigate this challenging terrain and harness the full potential of battery technology, a well-defined and comprehensive data strategy resp. knowledge management strategy are indispensable. Conversely, the imminent and rapid progression of artificial intelligence (AI) is poised to have a substantial impact on the forthcoming landscape of work and the methodologies organizations employ for the management of their knowledge management (KM) procedures. Conventional KM endeavors encompass a spectrum of activities such as the creation, transmission, retention, and evaluation of an enterprise’s knowledge over the entire knowledge lifecycle.
Technical Paper

A Comparative Analysis of Thermal Runaway Propagation in Different Modular Lithium-Ion Battery Configuration

2024-05-06
2024-01-2901
Thermal runaway is a critical safety concern in lithium-ion battery systems, emphasising the necessity to comprehend its behaviour in various modular setups. This research compares thermal runaway propagation in different modular configurations of lithium-ion batteries by analysing parameters such as cell spacing and distribution, application of phase change materials (PCMs), and implementing insulating materials. The study at the module level includes experimental validation and employs a comprehensive model considering heat transfer due to electrical performance and thermal runaway phenomena. It aims to identify the most effective modular configuration for mitigating thermal runaway risks and enhancing battery safety. The findings provide valuable insights into the design and operation of modular lithium-ion battery systems, guiding engineers and researchers in implementing best practices to improve safety and performance across various applications.
Technical Paper

Numerical Approach for the Characterization of the Venting Process of Cylindrical Cells Under Thermal Runaway Conditions

2024-05-06
2024-01-2900
The increasing awareness on the harmful effects on the environment of traditional Internal Combustion Engines (ICE) is driving the industry toward cleaner powertrain technologies such as battery-driven Electric Vehicles. Nonetheless, the high energy density of Li-Ion batteries can cause strong exothermic reactions under certain conditions that can lead to catastrophic results, called Thermal Runaway (TR). Hence, a strong effort is being placed on understanding this phenomena and increase battery safety. Specifically, the vented gases and their ignition can cause the propagation of this phenomenon to adjancent batteries in a pack. In this work, Computational Fluid Dynamics (CFD) are employed to predict this venting process in a LG18650 cylindrical battery. The ejection of the generated gases was considered to analyze its dispersion in the surrounding volume through a Reynolds-Averaged Navier-Stokes (RANS) approach.
X