Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

On-Center Steering Model for Realistic Steering Feel based on Real Measurement Data

2024-07-02
2024-01-2994
Driving simulators allow the testing of driving functions, vehicle models and acceptance assessment at an early stage. For a real driving experience, it's necessary that all immersions are depicted as realistically as possible. When driving manually, the perceived haptic steering wheel torque plays a key role in conveying a realistic steering feel. To ensure this, complex multi-body systems are used with numerous of parameters that are difficult to identify. Therefore, this study shows a method how to generate a realistic steering feel with a nonlinear open-loop model which only contains significant parameters, particularly the friction of the steering gear. This is suitable for the steering feel in the most driving on-center area. Measurements from test benches and real test drives with an Electric Power Steering (EPS) were used for the Identification and Validation of the model.
Technical Paper

Thermal Management System for Battery Electric Heavy-Duty Trucks

2024-07-02
2024-01-2971
On the path to decarbonizing road transport, electric commercial vehicles will play a significant role. The first applications were directed to the smaller trucks for distribution traffic with relatively moderate driving and range requirements, but meanwhile, the first generation of a complete portfolio of truck sizes is developed and available on the market. In these early applications, many compromises were accepted to overcome component availability, but meanwhile, the supply chain can address the specific needs of electric trucks. With that, the optimization towards higher usability and lower costs can be moved to the next level. Especially for long-haul trucks, efficiency is a driving factor for the total costs of ownership. Besides the propulsion system, all other systems must be optimized for higher efficiency. This includes thermal management since the thermal management components consume energy and have a direct impact on the driving range.
Technical Paper

Analysis of human driving behavior with focus on vehicle lateral control

2024-07-02
2024-01-2997
The optimization and further development of automated driving functions offers great potential to relieve the driver in various driving situations and increase road safety. Simulative testing in particular is an indispensable tool in this process, allowing conclusions to be drawn about the design of automated driving functions at a very early stage of development. In this context, the use of driving simulators provides support so that the driving functions of tomorrow can be experienced in a very safe and reproducible environment. The focus of the acceptance and optimization of automated driving functions is particularly on vehicle lateral control functions. As part of this paper, a test person study was carried out regarding manual vehicle lateral control on the dynamic vehicle road simulator at the Institute of Automotive Engineering.
Technical Paper

Challenges of measuring low levels of CO2 and NOx on H2-ICE

2024-07-02
2024-01-2998
Society is moving towards climate neutrality where hydrogen fuelled combustion engines (H2 ICE) could be considered a main technology. These engines run on hydrogen (H2) so carbon-based emission are only present at a very low level from the lube oil. The most important pollutants NO and NO2 are caused by the exhaust aftertreatment system as well as CO2 coming from the ambient air. For standard measurement technologies these low levels of CO2 are hard to detect due to the high water content. Normal levels of CO2 are between 400-500 ppm which is very close or even below the detection limit of commonly used non-dispersive-infrared-detectors (NDIR). As well the high water content is very challenging for NOx measuring devices, like chemiluminescence detectors (CLD), where it results in higher noise and therefore a worse detection limit. Even for Fourier-transformed-infrared-spectroscopy-analysers (FT-IR) it is challenging to deal with water content over 15% without increased noise.
Technical Paper

Probabilistically Extended Ontologies a basis for systematic testing of ML-based systems

2024-07-02
2024-01-3002
Autonomous driving is a hot topic in the automotive domain, and there is an increasing need to prove its reliability. They use machine learning techniques, which are themselves stochastic techniques based on some kind of statistical inference. The occurrence of incorrect decisions is part of this approach and often not directly related to correctable errors. The quality of the systems is indicated by statistical key figures such as accuracy and precision. Numerous driving tests and simulations in simulators are extensively used to provide evidence. However, the basis of all descriptive statistics is a random selection from a probability space. The difficulty in testing or constructing the training and test data set is that this probability space is usually not well defined. To systematically address this shortcoming, ontologies have been and are being developed to capture the various concepts and properties of the operational design domain.
Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
Technical Paper

Exploring methanol and naphtha as alternative fuels for a hybrid-ICE battery-driven light-duty vehicle

2024-06-12
2024-37-0021
In pursuing sustainable automotive technologies, exploring alternative fuels for hybrid vehicles is crucial in reducing environmental impact and aligning with global carbon emission reduction goals. This work compares methanol and naphtha as potential suitable alternative fuels for running in a battery-driven light-duty hybrid vehicle by comparing their performance with the diesel baseline engine. This work employs a 0-D vehicle simulation model within the GT-Power suite to replicate vehicle dynamics under the Worldwide Harmonized Light Vehicles Test Cycle (WLTC). The vehicle choice enables the assessment of a delivery application scenario using distinct payload capacities: 0%, 25%, 50%, and 100%. The model is fed with engine maps derived from previous experimental work conducted in the same engine, in which a full calibration was obtained that ensures the engine's operability in a wide region of rotational speed and loads.
Technical Paper

Noise pollution – A breakthrough approach.

2024-06-12
2024-01-2919
Authors : Thomas ANTOINE, Christophe THEVENARD, Pierrick BOTTA, Jerome DESTREE, Alain Le Quenven Future noise emission limits for passenger car are going to lower levels by 2024 (Third phase of R51-03, with a limit of 68dBA for the pass by noise) –Social cost of noise for France in 2021, shows clearly that the dominant source of noise pollution is indeed road traffic (81 Bn€ for a total of 146 Bn€) This R51 regulation is meant to lower the noise pollution from road traffic, however when looking closer to the sound source and their contributions, in particular the tire/road noise interaction, the environmental efficiency of this regulation is questionable. Indeed: Tire/Road interaction involves tires characteristics, that are constrained by an array of specification for energy efficiency, safety (wet grip, braking, etc…) and it has been proven that there is a physical limit to what could be expected from the tire as far as tire/road interaction noise is concerned.
Technical Paper

Effect of Dithering on post-catalyst exhaust gas composition and on short time regeneration of deactivated PdO/Al2O3 catalysts under real engine conditions

2024-06-12
2024-37-0002
Fossil fuels such as natural gas used in engines still play the most important role worldwide despite such measures as the German energy transition which however is also exacerbating climate change as a result of carbon dioxide emissions. One way of reducing carbon dioxide emissions is the choice of energy sources and with it a more favourable chemical composition. Natural gas, for instance, which consist mainly of methane, has the highest hydrogen to carbon ratio of all hydrocarbons, which means that carbon dioxide emissions can be reduced by up to 35% when replacing diesel with natural gas. Although natural gas engines show an overall low CO2 and pollutant emissions level, methane slip due to incomplete combustion occurs, causing methane emissions with a more than 20 higher global warming potential than CO2.
Technical Paper

Rotation for a better tomorrow - SKF’s journey towards decarbonization

2024-06-12
2024-37-0033
Let’s start with the uncomfortable truth, climate change is happening, and the automotive industrial network is one of the main industries contributing to greenhouse gas emissions. SKF is an energy intensive business – directly using energy, mainly in the form of electricity and gas, in its operations around the world. In addition, SKF utilizes materials, predominantly steel, and services which can be energy and carbon intensive – such as transports and raw material in production and processing. The combined impact of these direct and indirect energy uses (scope 1, 2 and 3 upstream) generates an excess of over two million metric tons of CO2e per year. This figure would however be significantly higher were it not for the actions SKF has taken to reduce both energy and carbon intensity. In 2000, we were one of the first companies to actually start to report and set climate targets.
Technical Paper

Transmission of sound under the influence of various environmental conditions

2024-06-12
2024-01-2933
Electrified vehicles are particularly quiet, especially at low speeds due to the absence of combustion noises. This is why there are laws worldwide for artificial driving sounds to warn pedestrians. These sounds are generated using a so-called Acoustic Vehicle Alerting System (AVAS) which must maintain certain minimum sound pressure levels in specific frequency ranges at low speeds. The creation of the sound currently involves an iterative and sometimes time-consuming process that combines composing the sound on a computer with measuring the levels with a car on an outside noise test track. This continues until both the legal requirements and the subjective demands of vehicle manufacturers are met. To optimize this process and reduce the measurement effort on the outside noise test track, the goal is to replace the measurement with a simulation for a significant portion of the development.
Technical Paper

Application of a Seat Transmissibility Approach to Experience Measured or Predicted Seat-rail Vibration in a Multi-Attribute Simulator

2024-06-12
2024-01-2962
Computer modelling, virtual prototyping and simulation is widely used in the automotive industry to optimize the development process. While the use of CAE is widespread, on its own it lacks the ability to provide observable acoustics or tactile vibrations for decision makers to assess, and hence optimize the customer experience. Subjective assessment using Driver-in-Loop simulators to experience data has been shown to improve the quality of vehicles and reduce development time and uncertainty. Efficient development processes require a seamless interface from detailed CAE simulation to subjective evaluations suitable for high level decision makers. In the context of perceived vehicle vibration, the need for a bridge between complex CAE data and realistic subjective evaluation of tactile response is most compelling. A suite of VI-grade noise and vibration simulators have been developed to meet this challenge.
Technical Paper

Automatic Maneuver Detection in Flight Data using Wavelet Transform and Deep Learning Algorithms

2024-06-01
2024-26-0462
The evaluation of aircraft characteristics through flight test maneuvers is fundamental to aviation safety and understanding flight attributes. This research project proposes a comprehensive methodology to detect and analyze aircraft maneuvers using full flight data, combining signal processing and machine learning techniques. Leveraging the Wavelet Transform, we unveil intricate temporal details within flight data, uncovering critical time-frequency insights essential for aviation safety. The integration of Long Short-Term Memory (LSTM) models enhances our ability to capture temporal dependencies, surpassing the capabilities of machine learning in isolation. These extracted maneuvers not only aid in safety but also find practical applications in system identification, air-data calibration, and performance analysis, significantly reducing pre-processing time for analysts.
Technical Paper

Post Flight Simulation of Dynamic Responses at the Satellite Interface of a Typical Launch Vehicle During Solid Motor Ignition

2024-06-01
2024-26-0461
Launch vehicle structures in course of its flight will be subjected to dynamic forces over a range of frequencies up to 2000 Hz. These loads can be steady, transient or random in nature. The dynamic excitations like aerodynamic gust, motor oscillations and transients, sudden application of control force are capable of exciting the low frequency structural modes and cause significant responses at the interface of launch vehicle and satellite. The satellite interface responses to these low frequency excitations are estimated through Coupled Load Analysis (CLA). The analysis plays a crucial role in mission as the satellite design loads and Sine vibration test levels are defined based on this. The perquisite of CLA is to predict the responses with considerable accuracy so that the design loads are not exceeded in the flight. CLA validation is possible by simulating the flight experienced responses through the analysis.
Technical Paper

Using Generative Models to Synthesize Multi-Component Asset Images for Training Defect Inspection Models

2024-06-01
2024-26-0474
Industries have been increasingly adopting AI based computer vision models for automated asset defect inspection. A challenging aspect within this domain is the inspection of composite assets consisting of multiple components, each of which is an object of interest for inspection, with its own structural variations, defect types and signatures. Training vision models for such an inspection process involves numerous challenges around data acquisition such as insufficient volume, inconsistent positioning, poor quality and imbalance owing to inadequate image samples of infrequently occurring defects. Approaches to augmenting the dataset through Standard Data Augmentation (SDA) methods (image transformations such as flipping, rotation, contrast adjustment, etc.) have had limited success. When dealing with images of such composite assets, it is challenging to correct the data imbalance at the component level using image transformations as they apply to all the components within an image.
Technical Paper

Formal Technique for Fault Detection and Identification of Control Intensive Application of Stall Warning System using System Theoretic Process Analysis

2024-06-01
2024-26-0471
Faults if not detected and processed will create catastrophe in closed loop system for safety critical applications in automotive, space, medical, nuclear, and aerospace domains. In aerospace applications such as stall warning and protection/prevention system (SWPS), algorithms detect stall condition and provide protection by deploying the elevator stick pusher. Failure to detect and prevent stall leads to loss of lives and aircraft. Traditional Functional Hazard and Fault Tree analyses are inadequate to capture all failures due to the complex hardware-software interactions for stall warning and protection system. Hence, an improved methodology for failure detection and identification is proposed. This paper discusses a hybrid formal method and model-based technique using STPA to identify and diagnose faults and provide monitors to process the identified faults to ensure robust design of the indigenous stall warning and protection system (SWPS).
Technical Paper

Reduction in Flight Operational Costs by Automating Weather Forecast Updates

2024-06-01
2024-26-0440
A GE Aviation Systems report documents that the National Oceanic and Atmospheric Administration (NOAA) provided weather forecast data has a bias of 15 knots and a standard deviation of 13.3 knots for the 40 flights considered for the research. It also had a 0.47 bias in the temperature with a standard deviation of 0.27. The temperature errors are not as significant as the wind. There is a potential opportunity to reduce the operational cost by improving the weather forecast. The flight management system (FMS) currently uses the weather forecast, available before takeoff, to identify an optimized flight path with minimum operational costs depending on the selected speed mode. Such a flight plan could be optimum for a shorter flight because these flight path planning algorithms are very less susceptible to the accuracy of the weather forecast.
Technical Paper

Proposed Test Method for Brake Pad Lining Robustness in Cold Conditions

2024-04-24
2024-01-5049
With globalization, vehicles are sold across the world throughout different markets and their automotive brake systems must function across a range of environmental conditions. Currently, there is no current standardized test that analyzes brake pads’ robustness against severe cold and humid environmental conditions. The purpose of this proposed test method is to validate brake system performance under severe cold conditions, comparing the results with ambient conditions to evaluate varying lining materials’ functional robustness. The goal of this paper is to aid in setting a standardized process and procedure for the testing of automotive brakes’ environmental robustness. Seven candidate friction materials were selected for analysis. The friction materials are kept confidential. Design of experiment (DOE) techniques were used to create a full-factorial test plan that covered all combinations of parameters.
Research Report

Emergence of Quantum Computing Technologies in Automotive Applications: Opportunities and Future Use Cases

2024-04-22
EPR2024008
Quantum computing and its applications are emerging rapidly, driving excitement and extensive interest across all industry sectors, from finance to pharmaceuticals. The automotive industry is no different. Quantum computing can bring significant advantages to the way we commute, whether through the development of new materials and catalysts using quantum chemistry or improved route optimization. Quantum computing may be as important as the invention of driverless vehicles. Emergence of Quantum Computing Technologies in Automotive Applications: Opportunities and Future Use Cases attempts to explain quantum technology and its various advantages for the automotive industry. While many of the applications presented are still nascent, they may become mainstream in a decade or so. Click here to access the full SAE EDGETM Research Report portfolio.
Technical Paper

Research on Artificial Potential Field based Soft Actor-Critic Algorithm for Roundabout Driving Decision

2024-04-09
2024-01-2871
Roundabouts are one of the most complex traffic environments in urban roads, and a key challenge for intelligent driving decision-making. Deep reinforcement learning, as an emerging solution for intelligent driving decisions, has the advantage of avoiding complex algorithm design and sustainable iteration. For the decision difficulty in roundabout scenarios, this paper proposes an artificial potential field based Soft Actor-Critic (APF-SAC) algorithm. Firstly, based on the Carla simulator and Gym framework, a reinforcement learning simulation system for roundabout driving is built. Secondly, to reduce reinforcement learning exploration difficulty, global path planning and path smoothing algorithms are designed to generate and optimize the path to guide the agent.
X