Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Parametric Study of Reduced Span Side Tapering on a Simplified Model with Wheels

2020-04-14
2020-01-0680
Many modern vehicles have blunt rear end geometries for design aesthetics and practicality; however, such vehicles are potentially high drag. The application of tapering; typically applied to an entire edge of the base of the geometry is widely reported as a means of reducing drag, but in many cases, this is not practical on real vehicles. In this study side tapers are applied to only part of the side edge of a simplified automotive geometry, to show the effects of practical implementations of tapers. The paper reports on a parametric study undertaken in Loughborough University’s Large Wind Tunnel with the ¼ scale Windsor model equipped with wheels. The aerodynamic effect of implementing partial side edge tapers is assessed from a full height taper to a 25% taper in both an upper and lower body configuration. These were investigated using force and moment coefficients, pressure measurements and planar particle image velocimetry (PIV).
Technical Paper

Streamlined Tails - The Effects of Truncation on Aerodynamic Drag

2020-04-14
2020-01-0673
Significant aerodynamic drag reduction is obtained on a bluff body by tapering the rear body. In the 1930’s it was found that a practical low drag car body could be achieved by cutting off the tail of a streamlined shape. The rear end of a car with a truncated tail is commonly referred to as a Kamm back. It has often been interpreted as implying that the drag of this type of body is almost the same as that for a fully streamlined shape. From a review of the limited research into truncated streamlined tails it is shown in this paper that, while true for some near axisymmetric bodies, it is not the case for many more car-like shapes. For these shapes the drag reduction from an elongated tail varies almost linearly with the reduction in cross section area. A CFD simulation to determine the drag reduction from a truncated streamlined tail of variable length on the simple Windsor Body is shown by way of confirmation.
Journal Article

An Objective Measure for Automotive Surface Contamination

2018-04-03
2018-01-0727
Surface contamination, or soiling, of the exterior of road vehicles can be unsightly, can reduce visibility and customer satisfaction, and, with the increasing application of surface-mounted sensors, can degrade the performance of advanced driver-assistance systems. Experimental methods of evaluating surface contamination are increasingly used in the product development process, but the results are generally subjective. The use of computational methods for predicting contamination makes objective measures possible, but comparable data from experiment is an important validation requirement. This article describes the development of an objective measure of surface contamination arising during experiments. A series of controlled experiments using ultraviolet (UV) dye-doped water are conducted to develop a robust methodology. This process is then applied to a simplified contamination test.
Journal Article

The Effect of Passive Base Ventilation on the Aerodynamic Drag of a Generic SUV Vehicle

2017-03-28
2017-01-1548
Sports Utility Vehicles (SUVs) typically have a blunt rear end shape (for design and practicality), however this is not beneficial for aerodynamic drag. Drag can be reduced by a number of passive and active methods such as tapering and blowing into the base. In an effort to combine these effects and to reduce the drag of a visually square geometry slots have been introduced in the upper side and roof trailing edges of a squareback geometry, to take air from the freestream and passively injects it into the base of the vehicle to effectively create a tapered body. This investigation has been conducted in the Loughborough University’s Large Wind Tunnel with the ¼ scale generic SUV model. The basic aerodynamic effect of a range of body tapers and straight slots have been assessed for 0° yaw. This includes force and pressure measurements for most configurations.
Journal Article

The Study of a Bi-Stable Wake Region of a Generic Squareback Vehicle using Tomographic PIV

2016-04-05
2016-01-1610
This paper demonstrates the use of large scale tomographic PIV to study the wake region of a Windsor model. This forms part of a larger study intending to understand the mechanisms that drive drag force changes when rear end optimizations are applied. For the first time, tomographic PIV has been applied to a large airflow volume (0.125m3, 500 x 500 x 500mm), which is of sufficient size to capture the near wake of a 25% scale Windsor model in a single measurement. The measurement volume is illuminated using a 200mJ double pulsed Nd:Yag laser fitted with a volume optic and seeded with 300μm helium filled soap bubbles generated by a novel high output seeder. Images were captured using four 4M Pixel LaVision cameras. The tomographic results are shown to produce high quality data with the setup used, but further improvements and tests at higher Reynolds number could be conducted if an additional seeding rake was used to increase seeding density.
Technical Paper

Experimental and Computational Study of Vehicle Surface Contamination on a Generic Bluff Body

2016-04-05
2016-01-1604
This paper focuses on methods used to model vehicle surface contamination arising as a result of rear wake aerodynamics. Besides being unsightly, contamination, such as self-soiling from rear tyre spray, can degrade the performance of lighting, rear view cameras and obstruct visibility through windows. In order to accurately predict likely contamination patterns, it is necessary to consider the aerodynamics and multiphase spray processes together. This paper presents an experimental and numerical (CFD) investigation of the phenomenon. The experimental study investigates contamination with controlled conditions in a wind tunnel using a generic bluff body (the Windsor model.) Contamination is represented by a water spray located beneath the rear of the vehicle.
Journal Article

Aerodynamic Drag Reduction on a Simple Car-Like Shape with Rear Upper Body Taper

2013-04-08
2013-01-0462
Various techniques to reduce the aerodynamic drag of bluff bodies through the mechanism of base pressure recovery have been investigated. These include, for example, boat-tailing, base cavities and base bleed. In this study a simple body representing a car shape is modified to include tapering of the rear upper body on both roof and sides. The effects of taper angle and taper length on drag and lift characteristics are investigated. It is shown that a significant drag reduction can be obtained with moderate taper angles. An unexpected feature is a drag rise at a particular taper length. Pressure data obtained on the rear surfaces and some wake flow visualisation using PIV are presented.
Technical Paper

The Optimization of Roof Trailing Edge Geometry of a Simple Square-Back.

2010-04-12
2010-01-0510
A large contribution to the aerodynamic drag of a vehicle is the loss of pressure in the wake region, especially on square-back configurations. Wake pressure recovery can be achieved by a variety of physical shape changes, but with vehicle shapes becoming ever more aerodynamically efficient research into active technologies for flow manipulation is becoming more prominent. The aim of the current paper is to generate an understanding of how an optimized roof trailing edge, in the form of a chamfer, can reduce wake size, increase base pressures and reduce drag. A comprehensive study using PIV (Particle Image Velocimetry), balance measurements and static pressure measurements was performed in order to investigate the flow and wake structure behind a simplified car model. Significant reductions in C d are demonstrated and directly related to the measured base and slant pressures.
Technical Paper

The Effects of Outlet Geometry on Automotive Demister Performance

2000-03-06
2000-01-1277
The established method of clearing a misted car windshield or of maintaining a clear view under misting conditions is through the application of an air supply via jet outlets in the instrument panel. The ability of such arrangements to perform adequately is a function of the prevailing environmental conditions, the vehicle speed, the condition of the demist air source and the geometry and arrangement of the jet outlets. This paper presents experimental data obtained in a purpose built environmental chamber designed to accommodate simple rectangular jets impinging on a misted glass surface. The facility consists of three conditioned air sources applied to a test chamber designed to represent the external, internal and demist air flows. Mist conditions on the glass surface are determined using a novel technique employing a CCD camera acquiring grey scale images which are digitally analysed to generate mist detection, grading and clearing contour data.
X