Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Runtime Safety Assurance of Autonomous Last-Mile Delivery Vehicles in Urban-like Environment

2024-07-02
2024-01-2991
The conventional process of last-mile delivery logistics often leads to safety problems for road users and a high level of environmental pollution. Delivery drivers must deal with frequent stops, search for a convenient parking spot and sometimes navigate through the narrow streets causing traffic congestion and possibly safety issues for the ego vehicle as well as for other traffic participants. This process is not only time consuming but also environmentally impactful, especially in low-emission zones where prolonged vehicle idling can lead to air pollution and to high operational costs. To overcome these challenges, a reliable system is required that not only ensures the flexible, safe and smooth delivery of goods but also cuts the costs and meets the delivery target.
Technical Paper

Analysis of human driving behavior with focus on vehicle lateral control

2024-07-02
2024-01-2997
The optimization and further development of automated driving functions offers great potential to relieve the driver in various driving situations and increase road safety. Simulative testing in particular is an indispensable tool in this process, allowing conclusions to be drawn about the design of automated driving functions at a very early stage of development. In this context, the use of driving simulators provides support so that the driving functions of tomorrow can be experienced in a very safe and reproducible environment. The focus of the acceptance and optimization of automated driving functions is particularly on vehicle lateral control functions. As part of this paper, a test person study was carried out regarding manual vehicle lateral control on the dynamic vehicle road simulator at the Institute of Automotive Engineering.
Technical Paper

Optimization-Based Battery Thermal Management for Improved Regenerative Braking in CEP Vehicles

2024-07-02
2024-01-2974
The courier express parcel service industry (CEP industry) has experienced significant changes in the recent years due to increasing parcel volume. At the same time, the electrification of the vehicle fleets poses additional challenges. A major advantage of battery electric CEP vehicles compared to internal combustion engine vehicles is the ability to regenerate the kinetic energy of the vehicle in the frequent deceleration phases during parcel delivery. If the battery is cold the maximum recuperation power of the powertrain is limited by a reduced chemical reaction rate inside the battery. In general, the maximum charging power of the battery depends on the state of charge and the battery temperature. Due to the low power demand for driving during CEP operation, the battery self-heating is comparably low under cold ambient conditions. Without active conditioning of the battery, potential regenerative energy is lost as a result of the cold battery.
Technical Paper

The influence of design operating conditions on engine coolant pump absorption in real driving scenarios.

2024-06-12
2024-37-0015
Reducing CO2 emissions in on-the-road transport is important to limit global warming and follow a green transition towards net zero Carbon by 2050. In a long-term scenario, electrification will be the future of transportation. However, in the mid-term, the priority should be given more strongly to other technological alternatives (e.g., decarbonization of the electrical energy and battery recharging time). In the short- to mid-term, the technological and environmental reinforcement of ICEs could participate in the effort of decarbonization, also matching the need to reduce harmful pollutant emissions, mainly during traveling in urban areas. Engine thermal management represents a viable solution considering its potential benefits and limited implementation costs compared to other technologies. A variable flow coolant pump actuated independently from the crankshaft represents the critical component of a thermal management system.
Technical Paper

Development of a Soft-Actor Critic Reinforcement Learning Algorithm for the Energy Management of a Hybrid Electric Vehicle

2024-06-12
2024-37-0011
In recent years, the urgent need to fully exploit the fuel economy potential of the Electrified Vehicles (xEVs) through the optimal design of their Energy Management System (EMS) have led to an increasing interest in Machine Learning (ML) techniques. Among them, Reinforcement Learning (RL) seems to be one of the most promising approaches thanks to its peculiar structure, in which an agent is able to learn the optimal control strategy through the feedback received by a direct interaction with the environment. Therefore, in this study, a new Soft Actor-Critic agent (SAC), which exploits a stochastic policy, was implemented on a digital twin of a state-of-the-art diesel Plug-in Hybrid Electric Vehicle (PHEV) available on the European market. The SAC agent was trained to enhance the fuel economy of the PHEV while guaranteeing its battery charge sustainability.
Technical Paper

Experimental Assessment of Drop-in Hydrotreated Vegetable Oil (HVO) in a Medium-Duty Diesel Engine for Low-emissions Marine Applications

2024-06-12
2024-37-0023
Nowadays, the push for more ecological low-carbon propulsion systems is high in all mobility sectors, including the recreational or light-commercial boating, where propulsion is usually provided by internal combustion engines derived from road applications. In this work, the effects of replacing conventional fossil-derived B7 diesel with Hydrotreated Vegetable Oil (HVO) were experimentally investigated in a modern Medium-Duty Engine, using the advanced biofuel as drop-in and testing according to the ISO 8178 marine standard. The compounded results showed significant benefits in terms of NOx, Soot, mass fuel consumption and WTW CO2 thanks to the inner properties of the aromatic-free, hydrogen-rich renewable fuel, with no impact on the engine power and minimal deterioration of the volumetric fuel economy.
Technical Paper

A Finite-Element-Simulation Workflow to Investigate the Aero- and Vibro-Acoustic Signature of an Enclosed Centrifugal Fan

2024-06-12
2024-01-2940
Centrifugal fans are applied in many industrial and civil applications, such as manufacturing processes and building HVAC systems. They can also be found in automotive applications. Noise-reduction mea- sures for centrifugal fans are often challenging to establish, as acous- tic performance may be considered a tertiary purchase criterion after energetic efficiency and price. Nonetheless, their versatile application raises the demand for noise control. In a low-Mach-number centrifugal fan, acoustic waves are predominantly excited by aerodynamic fluctu- ations in the flow field and transmit to the exterior via the housing and duct walls. The scientific literature documents numerous mech- anisms that cause flow-induced sound generation, even though only some are considered well-understood. Numerical simulation methods are widely used to gather spatially high-resolved insights into physical fields.
Technical Paper

Acoustic VS reliability. Case study of automotive components undergoing vibration endurance tests

2024-06-12
2024-01-2948
During design development phases, automotive components undergo a strict validation process aiming to demonstrate requested levels of performance and durability. In some cases, specific developments encounter a major blocking point : decoupling systems responsible for optimal acoustic performances. On the one hand, damping rubbers need to be soft to comply with noise, vibration & harshness criteria. However, softness would provoke such high amplitudes during vibration endurance tests that components would suffer from failures. On the other hand, stiffer rubbers, designed for durability purposes, would fail to meet noise compliance. The rubber design development goes through a double-faced dilemma : design with acceptable trade-off between NVH and durability, and efficient ways to develop compliant designs. This paper illustrates two case studies where different methodologies are applied to validate decoupling systems from both acoustic and reliability perspectives.
Technical Paper

Structural Dynamic Modelling of HVAC Systems

2024-06-12
2024-01-2923
The structure-, fluid- and air-borne excitation generated by HVAC compressors can lead to annoying noise and low frequency vibrations in the passenger compartment. These noises and vibrations are of great interest in order to maintain high passenger comfort of EV vehicles. The main objective of this paper is to develop a numerical model of the HVAC system and to simulate the structure-borne sound transmission from the compressor through the HVAC hoses to the vehicle in a frequency range up to 1 kHz. An existing automotive HVAC system was fully replicated in the laboratory. Vibration levels were measured on the compressor and on the car body side of the hoses under different operational conditions. Additional measurements were carried out using external excitation of the compressor in order to distinguish between structure- and fluid-borne transmission. The hoses were experimentally characterised with regard to their structure-borne sound transmission characteristics.
Technical Paper

Thermal Analysis of Prismatic Core Sandwich Structural Panel for Hypersonic Application

2024-06-01
2024-26-0422
Hypersonic flight vehicles have potential applications in strategic defence, space missions, and future civilian high-speed transportation systems. However, structural integration has significant challenges due to extreme aero-thermo-mechanical coupled effects. Scramjet-powered air-breathing hypersonic vehicles experience extreme heat loads induced by combustion, shock waves and viscous heat dissipation. An active cooling thermal protection system for scramjet applications has the highest potential for thermal load management, especially for long-duration flights, considering the weight penalty associated with the heavier passive thermal insulation structures. We consider the case of active cooling of scramjet engine structural walls with endothermic hydrocarbon fuel. We have developed a semi-analytical quasi-2D heat transfer model considering a prismatic core single cooling channel segment as a representative volume element (RVE) to analyse larger-scale problems.
Technical Paper

The Effect of Excessive Thermo-Mechanical Stress on the Performance of High-Pressure Hose Assemblies used under Flexing Motion

2024-06-01
2024-26-0427
A typical high-pressure hose assembly consists of hose made with synthetic polymer braids and Teflon tube crimped with metallic fittings. These hose assemblies are mainly used for aircraft landing gear application considering its high-pressure sustenance and better flexibility. The proposed study investigates the effect of thermo-mechanical stress generated due to cyclic soaking and flexibility testing at thermostatic subzero (-65°F) and high temperature (+275°F) on performance of high-pressure hose assembly. This effect is further studied through hose tear-down which was envisioned to investigate the hose layer degradation and focused on changes in inner PTFE tube, which ultimately leads to product performance issues. Keywords: braids, tear down analysis, thermo-mechanical, inter-layer abrasion.
Technical Paper

A Percipient Analysis of Jaguar I-PACE Electric Vehicle Energy Consumption Using Big Data Analytics

2024-04-09
2024-01-2879
Vehicle efficiency and range, along with the DC charging speed, are deemed as the most important criteria for an electric vehicle currently. The electric vehicle energy consumption is impacted by the change in temperature along with the driving style and average speed of a customer, all other factors being constant. Hence understanding the patterns and impact of different aspects of an EV range & charging speed is crucial in delivering an electric vehicle with robust efficiency across all weather conditions. In this paper we have analysed vehicle parameters of global Jaguar I-PACE customer data. We present and analyse the collated big data of around 50,000+ unique vehicles with a data aggregate of well over 482 million km. In moderate ambient conditions the analysis indicated a good correlation with 50th to 75th percentile drivers’ energy consumption to the EPA label figure.
Technical Paper

Coordinated Charging and Dispatching for Large-Scale Electric Taxi Fleets Based on Bi-Level Spatiotemporal Optimization

2024-04-09
2024-01-2880
The operation management of electric Taxi fleets requires cooperative optimization of Charging and Dispatching. The challenge is to make real-time decisions about which is the optimal charging station or passenger for each vehicle in the fleet. With the rapid advancement of Vehicle Internet of Things (VIOT) technologies, the aforementioned challenge can be readily addressed by leveraging big data analytics and machine learning algorithms, thereby contributing to smarter transportation systems. This study focuses on optimizing real-time decision-making for charging and dispatching in large-scale electric taxi fleets to improve their long-term benefits. To achieve this goal, a spatiotemporal decision framework using Bi-level optimization is proposed. Initially, a deep reinforcement learning-based model is built to estimate the value of charging and order dispatching under uncertainty.
Technical Paper

Value Driving - A Guide to Save Fuel, Travel Time, and Emissions

2024-04-09
2024-01-2851
Reducing consumption of fossil fuels and resulting emissions remains a goal of the worlds’ population. Perhaps as an aid to encourage more fuel-efficient driving style, many modern motor vehicles are equipped with digital displays of average and instantaneous display of fuel efficiency in miles per gallon (mileage) or liters per 100 kilometers. The display may be interesting to drivers concerned with fuel efficiency, but may not yield desired or best results. What is missing is impact on time of travel; what is the fuel- and time-efficient way to accelerate, what steady speed to travel, and how to decelerate? The author has defined a new fuel efficiency measure described as Dynamic Fuel Cost, in units of currency such as dollars, per travel time in hours, and a microprocessor to compute and display same. Using this display, vehicle operators can choose a maximum steady highway speed, accelerate and decelerate in ways that are fuel-, time- and cost-effective and minimize emissions.
Technical Paper

Robust Adaptive Control for Dual Fuel Injection Systems in Gasoline Engines

2024-04-09
2024-01-2841
The paper presents a robust adaptive control technique for precise regulation of a port fuel injection + direct injection (PFI+DI) system, a dual fuel injection configuration adopted in modern gasoline engines to boost performance, fuel efficiency, and emission reduction. Addressing parametric uncertainties on the actuators, inherent in complex fuel injection systems, the proposed approach utilizes an indirect model reference adaptive control scheme. To accommodate the increased control complexity in PFI+DI and the presence of additional uncertainties, a nonlinear plant model is employed, incorporating dynamics of the exhaust burned gas fraction. The primary objective is to optimize engine performance while minimizing fuel consumption and emissions in the presence of uncertainties. Stability and tracking performance of the adaptive controller are evaluated to ensure safe and reliable system operation under various conditions.
Technical Paper

Energy Efficiency Technologies of Connected and Automated Vehicles: Findings from ARPA-E’s NEXTCAR Program

2024-04-09
2024-01-1990
This paper details the advancements and outcomes of the NEXTCAR (Next-Generation Energy Technologies for Connected and Automated on-Road Vehicles) program, an initiative led by the Advanced Research Projects Agency-Energy (ARPA-E). The program focusses on harnessing the full potential of Connected and Automated Vehicle (CAV) technologies to develop advanced vehicle dynamic and powertrain control technologies (VD&PT). These technologies have shown the capability to reduce energy consumption by 20% in conventional and hybrid electric cars and trucks at automation levels L1-L3 and by 30% L4 fully autonomous vehicles. Such reductions could lead to significant energy savings across the entire U.S. vehicle fleet.
Technical Paper

A Study on Optimization Development of Cooling Fan Motor for EMC

2024-04-09
2024-01-1988
With the trend of electrification and connectivity, more electrified parts and more integrated chips are being applied. Consequently, potential problems based on electro-magnetic could occur more easily, and interest on EMC performance has been rising according to the degree of electrification. In this paper, one of the most severe systems, cooling fan motor in terms of EMI, is analyzed and improvement methods are suggested for each type of cooling fan. Additionally, an optimized configuration of improvement method for EMC has been derived through analysis and study. Finally, verification and validation are implemented at the system and vehicle levels.
Technical Paper

Methodology to Estimate Load Spectra of Autonomous and Highly Automated Vehicles

2024-04-09
2024-01-2326
The knowledge of representative load collectives and duty cycles is crucial for designing and dimensioning vehicles and their components. For human driven vehicles, various methods are known for deriving these load spectra directly or indirectly from fleet measurement data of the customer vehicle operation. Due to the lack of market penetration of highly automated and autonomous vehicles, there is no sufficient fleet data available to utilize these methods. As a result of increased demand for ride comfort compared to human driven vehicles, autonomous vehicle operation promises reduced driving speeds as well as reduced lateral and longitudinal accelerations. This can consequently lead to decreasing operation loads, thus enabling potentially more light-weight, cost-effective, resource-saving and energy-efficient vehicle components.
Technical Paper

Elucidation of Sealing Mechanism of Novel Acrylate Liquid Based BluSealTM Wire Harness Splice Sealing Technology

2024-04-09
2024-01-2356
Unlike conventional heat shrink tubes or enclosure systems which only seals wires and splices on the outside, a novel Acrylate based sealing technology developed and introduced by Eurotech is a low viscosity fluid formulated to be applied to the splices either in liquid droplets or by dipping, utilizes fast capillary-wicking action and quick self-cure inside the wires to form a robust, cost effective, flexible, impenetrable seal to prevent moisture damage of wire harnesses and associated electrical components. This technology is an enabler of new wire harness architectures currently limited by the shortcomings of conventional sealing products such as heat shrink tubes which come up short when the splice configurations or geometries become too complex or difficult for sealing from the outside.
Technical Paper

Experimental Study on Performance and Emissions of BS VI Complaint EFI Motorbike with Oxygenated Fuel Blends (E0, E10, E20 & M15)

2024-04-09
2024-01-2372
Net-Zero emission ambitions coupled with availability of oxygenated fuels like ethanol encouraged the Government towards commercial implementation of fuels like E20. In this background, a study was taken up to assess the impact of alcohol blended fuels on performance and emission characteristics of a BS-VI complaint motorbike. A single cylinder, 113-cc spark ignition, ECU based electronic fuel injection motorbike was used for conducting tests. Pure gasoline (E0), 10% ethanol-gasoline (E10), 20% ethanol-gasoline (E20) and 15% methanol-gasoline (M15) blends meeting respective IS standards were used as test fuels. The oxygen content of E10, E20 and M15 fuels were 3.7%, 7.4% and 8.35% by weight respectively. Experiments were conducted following worldwide motorcycle test cycle (WMTC) as per AIS 137 standard and wide-open-throttle (WOT) test cycle, using chassis dynamometer.
X