Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Dust Mitigation Solutions for Lunar and Mars Surface Systems

2007-07-09
2007-01-3213
Dust mitigation has been identified as a major obstacle to lunar and Mars surface operations for space suits, robotics, and vehicle systems. Experience from the Apollo program has demonstrated that lunar stays of limited duration will be difficult and dangerous if dramatic measures are not taken to mitigate the impacts of dust contamination. Numerous mitigation approaches have been studied in the past including electrostatic materials, cleaning techniques, and suit-locks. Many of these approaches are effective in operation but are challenged by the trend of returning to a single space suit system, similar to Apollo, which is used for launch/entry as well as surface and contingency extra-vehicular activity (EVA) operations. Bringing the surface suit inside the vehicle after surface EVA will transfer surface material in the vehicle.
Technical Paper

I-Suit Advanced Spacesuit Design Improvements and Performance Testing

2003-07-07
2003-01-2443
The I-Suit has been tested in varying environments at Johnson Space Center (JSC). This includes laboratory mobility testing, KC-135 partial gravity flights, and remote field testing in the Mojave Desert. The experience gained from this testing has provided insight for design improvements. These improvements have been an evolutionary process since 1998 to the present. The design improvements affect existing suit components and introduce new components for systems processing and human/robotic interface. Examples of these design improvements include improved mobility joints, a new helmet with integrated communications and displays capability, and integration of textile switches for control of suit functions and tele-robotic operations. This paper addresses an overview of I-Suit design improvements and results of manned and unmanned performance tests.
Technical Paper

Shuttle Space Suit Glove Thermal Protection and Performance Improvement Evolution

1994-06-01
941329
The success of astronauts performing Extra-Vehicular Activity (EVA) is highly dependent on the performance capabilities of their spacesuit gloves. Thermal protection of crewmember's hands has always been a critical concern but has recently become more important because of the increasing role of the crewmember in the manipulation of objects in the environment of space. The utilization of EVA for challenging missions, such as the Hubble Space Telescope (HST) repair and Space Station assembly missions, has prompted the need for improved glove thermal protection. The increased manipulation of hot and cold objects is necessary to complete these complex missions. Thermal protection of the spacesuit glove is accomplished by the Thermal and Micrometeoroid Garment (TMG). The TMG is a multilayered cover that fits over the restraint layer of the spacesuit glove. The TMG is engineered to provide thermal protection for crewmember's hands as well as for the glove bladder and restraint.
Technical Paper

Advanced Technology Application in the Production of Spacesuit Gloves

1990-07-01
901322
ILC Dover successfully designed and developed an advanced high pressure (8.3 psia) Spacesuit Glove for use on the space station. As an aide to fabrication of this glove, a feasibility study has been performed to use laser or photo optical, non contact scanning, CAD and CAM technologies. The current process for fabrication of spacesuit gloves starts by taking hand casts of a crewman's hands in one or more positions. The castings are subsequently measured by hand in critical areas, and a manual system of defining the glove bladder and glove restraint patterns follows. The proposed process will involve collecting dimensional data on hands using laser or photo optical scanning techniques. Key dimensions will be identified on a CAD system. Algorithms pre-programmed in the CAD system along with some CAD modeling will be used to manipulate the scanned data to define the glove bladder and glove restraint.
X