Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

On-Center Steering Model for Realistic Steering Feel based on Real Measurement Data

2024-07-02
2024-01-2994
Driving simulators allow the testing of driving functions, vehicle models and acceptance assessment at an early stage. For a real driving experience, it's necessary that all immersions are depicted as realistically as possible. When driving manually, the perceived haptic steering wheel torque plays a key role in conveying a realistic steering feel. To ensure this, complex multi-body systems are used with numerous of parameters that are difficult to identify. Therefore, this study shows a method how to generate a realistic steering feel with a nonlinear open-loop model which only contains significant parameters, particularly the friction of the steering gear. This is suitable for the steering feel in the most driving on-center area. Measurements from test benches and real test drives with an Electric Power Steering (EPS) were used for the Identification and Validation of the model.
Technical Paper

Thermal Management System for Battery Electric Heavy-Duty Trucks

2024-07-02
2024-01-2971
On the path to decarbonizing road transport, electric commercial vehicles will play a significant role. The first applications were directed to the smaller trucks for distribution traffic with relatively moderate driving and range requirements, but meanwhile, the first generation of a complete portfolio of truck sizes is developed and available on the market. In these early applications, many compromises were accepted to overcome component availability, but meanwhile, the supply chain can address the specific needs of electric trucks. With that, the optimization towards higher usability and lower costs can be moved to the next level. Especially for long-haul trucks, efficiency is a driving factor for the total costs of ownership. Besides the propulsion system, all other systems must be optimized for higher efficiency. This includes thermal management since the thermal management components consume energy and have a direct impact on the driving range.
Technical Paper

Radar-based Approach for Side-Slip Gradient Estimation

2024-07-02
2024-01-2976
In vehicle ego-motion estimation, vehicle control, and advanced driver assist systems the vehicle dynamics are described by a few key parameters. The side-slip gradient, being one of them, is used to model the lateral behavior of the vehicle. This parameter is rarely known precisely, since it depends on the vehicle’s mass distribution, its tires, and even the chassis setup. Thus, an online-estimation of the side-slip gradient is beneficial, especially in serial applications. Estimating the side-slip gradient with conventional vehicle sensors such as wheel-speed, steering, and inertial sensors poses a significant challenge since considerable dynamic excitation of the vehicle is required, which is uncommon in normal driving. Here, radar sensors open new opportunities in the estimation of such vehicle dynamics parameters since they allow for an instantaneous measurement of the lateral velocity.
Technical Paper

Towards a New Approach for Reducing the Safety Validation Effort of Driving Functions Using Prediction Divergence

2024-07-02
2024-01-3003
An essential component in the approval of advanced driver assistance systems (ADAS) and automated driving systems (ADS) is the quantification of residual risk, which demonstrates that hazardous behavior (HB) occurs less frequently than specified by a corresponding acceptance criterion. In the case of HB with high potential impact severity, only very low accepted frequencies of occurrence are tolerated. To avoid uncertainties due to abstractions and simplifications in simulations, the proof of the residual risk in systems such as advanced emergency braking systems (AEBS) is often partially or entirely implemented as system-level field test. However, the low rates and high confidence required, common for residual risk demonstrations, result in a significant disadvantage of these field tests: the long driving distance required.
Technical Paper

Enhancing Urban AEB Systems: Simulation-Based Analysis of Error Tolerance in Distance Estimation and Road-Tire Friction Coefficients

2024-07-02
2024-01-2992
Autonomous Emergency Braking (AEB) systems are critical in preventing collisions, yet their effectiveness hinges on accurately estimating the distance between the vehicle and other road users, as well as understanding road conditions. Errors in distance estimation can result in premature or delayed braking and varying road conditions alter road-tire friction coefficients, affecting braking distances. Advancements in sensor technology and deep learning have improved vehicle perception and real-world understanding. The integration of advanced sensors like LiDARs has significantly enhanced distance estimation. Cameras and deep neural networks are also employed to estimate the road conditions. However, AEB systems face notable challenges in urban environments, influenced by complex scenarios and adverse weather conditions such as rain and fog. Therefore, investigating the error tolerance of these estimations is essential for the performance of AEB systems.
Technical Paper

Set-up of an in-car system for investigating driving style on the basis of the 3D-method

2024-07-02
2024-01-3001
Investigating human driver behavior enhances the acceptance of the autonomous driving and increases road safety in heterogeneous environments with human-operated and autonomous vehicles. The previously established driver fingerprint model, focuses on the classification of driving style based on CAN bus signals. However, driving styles are inherently complex and influenced by multiple factors, including changing driving environments and driver states. To comprehensively create a driver profile, an in-car measurement system based on the Driver-Driven vehicle-Driving environment (3D) framework is developed. The measurement system records emotional and physiological signals from the driver, including ECG signal and heart rate. A Raspberry Pi camera is utilized on the dashboard to capture the driver's facial expressions and a trained convolutional neural network (CNN) recognizes emotion. To conduct unobtrusive ECG measurements, an ECG sensor is integrated into the steering wheel.
Technical Paper

A Novel Approach for the Safety Validation of Emergency Intervention Functions using Extreme Value Estimation

2024-07-02
2024-01-2993
As part of the safety validation of advanced driver assistance systems (ADAS) and automated driving (AD) functions, it is necessary to demonstrate that the frequency at which the system exhibits hazardous behavior (HB) in the field is below an acceptable threshold. This is typically tested by observation of the system behavior in a field operational test (FOT). For situations in which the system under test (SUT) actively intervenes in the dynamic driving behavior of the vehicle, it is assessed whether the SUT exhibits HB. Since the accepted threshold values are generally small, the amount of data required for this strategy is usually very large. This publication proposes an approach to reduce the amount of data required for the evaluation of emergency intervention systems with a state machine based intervention logic by including the time periods between intervention events in the validation process.
Technical Paper

Next-gen battery strategies 2027+: Potentials and challenges for future battery designs and diversification in product portfolios to serve a large bandwidth of market applications

2024-07-02
2024-01-3018
The pace of innovations in battery development is revolutionizing the landscape and opportunities for energy storage applications leading to a stronger market segmentation enabling a better suitability to fulfill specific application requirements. For automotive applications, several approaches to increase energy densities, to improve fast charging performance, and to reduce cost on a pack level are considered. Among them, a promising example is the direct integration of battery cells into the battery pack (Cell-to-pack; CTP) or vehicle (Cell-to-chassis, CTC) to increase energy densities and to reduce costs, as already commercialized by Tesla, CATL and others. In the pack development, especially Asian players are one of the frontrunners, where e.g., hybrid cell battery systems with a mixture of cells with different cathode chemistries as introduced by NIO, are experiencing a high interest of the market.
Technical Paper

Steering System with Mechanical Coupling of The Wheels and The Possibility of Wheel Steering in Opposite Directions

2024-07-02
2024-01-2970
In the course of the U-Shift project, an automated, driverless and electrically driven vehicle concept is developed. By separating the vehicle into a drive module and a transport capsule, a novel form of mobility is created. The autonomous driving module, the so-called Driveboard, is able to change the transport capsules independently and thus serves both passenger and goods transport. In order to be able to use the vehicle effectively, especially in urban areas, the space required for manoeuvring and loading or unloading the capsules must be kept as small as possible. This poses special challenges for the steering system. In this paper, a novel steering system is presented that enables both same-direction and opposite-direction wheel steering. First, the fundamental concept of the steering system is presented. After that, the design is explained and the assembled steering system is shown. During normal cornering, there is a mechanical coupling between the wheels.
Technical Paper

Evaluation and simulation of wheel steering functionality on a Road to Rig test bench

2024-07-02
2024-01-3000
The automotive industry is continuously evolving, demanding innovative approaches to enhance testing methodologies and preventive identify potential issues. This paper proposes an advancement test approach in the area of the overall vehicle system included steering system and power train on a “Road to Rig” test bench. The research aims to revolutionize the conventional testing process by identifying faults at an early stage and eliminating the need to rely solely on field tests. The motivation behind this research is to optimize the test bench setup and bring it even closer to real field tests. Key highlights of the publication include the introduction of an expanded load spectrum, incorporating both steering angle and speed parameters along the test track. The load includes different route and driving profiles like on a freeway, overland and city drive in combination with the steering angles.
Technical Paper

Sound Quality Evaluation on Noise Caused by Electric Power Steering Wheel Utilizing CNN based on Sound Metrics

2024-06-12
2024-01-2963
This research aims presents the method classifying the noise source and evaluating the sound quality of the noise caused by operating of electric power steering wheel in an electric vehicle. The steering wheel has been operated by the motor drive by electric power and it called motor-driven electric power (MDPS) system. If the motor is attached to the steering column of the steering device, it is called C-MDPS system. The steering device of the C-MDPS system comprises of motor, bearings, steering column, steering wheel and worm shaft. Among these components the motor and bearings are main noise sources of C-MDPS system. When the steering wheel is operated in an electric vehicle, the operating noise of the steering device inside the vehicle is more annoying than that in a gasoline engine vehicle since the operating noise is not masked by engine noise. Defects in the C-MDPS system worsen the operating noise of the steering system.
Technical Paper

Modelling charging infrastructure in V2G scenario

2024-06-12
2024-37-0003
Nowadays, electrification is largely acknowledged as a crucial strategy to mitigate climate change, especially for the transportation sector through the transition from conventional vehicles to electric vehicles (EVs). As the demand for EVs continues to rise, the development of a robust and widespread charging infrastructure has become a top priority for governments and decision-makers. In this context, innovative approaches to energy management and sustainability, such as Vehicle-to-Grid (V2G), are gradually being employed, leading to new challenges, like grid service integration, charge scheduling and public acceptance. For instance, the planned use scenario, the user’s behaviour, and the reachability of the geographical position influence the optimal energy management strategies both maintain user satisfaction and optimize grid impact.
Technical Paper

Acceleration of Fast-SCR Reactions by Eliminating “The Ammonia Blocking Effect”

2024-06-12
2024-37-0001
The recent and future trends of energy for heavy-duty vehicles are considered e-fuel, H2, and electricity, and the Selective Catalytic Reduction (SCR) system is necessary for achieving the goals of zero-emission internal combustion engines that use e-fuel and H2 as a fuel. The Japanese automotive industry uses a Cu-zeolite based SCR catalyst since Vanadium is designated as a specific chemical substance, which the Ministry of Environment prohibits its release into the atmosphere. This study attempted purification rate improvement by controlling the NH3 supply with a mini-reactor and by simulated exhaust gas. Specifically, the experiment was done by examining the effect of the pulse amplitude, frequency, and duty ratio on the purification rate by supplying the NH3 pulse injection to the test piece Cu-chabazite catalyst. Additionally, the results of the reactor experiment were validated by numerical simulation considering the detailed surface reaction processes on the catalyst.
Technical Paper

Adaptive Inverse Control of Vibration Exciter for Tracking Target Acceleration of a Car Subsystem

2024-06-12
2024-01-2920
This research aims to develop an inverse control method capable of adaptively simulating dynamic models of car subsystems in the rig-test condition. Accurate simulation of the actual vibration conditions is one of the most crucial factors in realizing reliable rig-test platforms. However, most typical rig tests are conducted under simple random or harmonic sweep conditions. Moreover, the conventional test methods are hard to directly adapt to the actual vibration conditions when switching the dynamic characteristics of the subsystem in the rig test. In the present work, we developed an inverse controller to adaptively control the vibration exciter referring to the target vibration signal. An adaptive LMS filter, employed for the control algorithm, updated the filter weights in real time by referring to the target and the measured acceleration signals.
Technical Paper

Velocity Estimation of a Descending Spacecraft in Atmosphereless Environment using Deep Learning

2024-06-01
2024-26-0484
Landing of spacecraft on Lunar or Martian surfaces is the last and critical step in inter planetary space missions. The atmosphere on earth is thick enough to slow down the craft but Moon or Mars does not provide a similar atmosphere. Moreover, other factors such as lunar dust, availability of precise onboard navigational aids etc would impact decision making. Soft landing meaning controlling the velocity of the craft from over 6000km/h to zero. If the craft’s velocity is not controlled, it might crash. Various onboard sensors and onboard computing power play a critical role in estimating and hence controlling the velocity, in the absence of GPS-like navigational aids. In this paper, an attempt is made using visual onboard sensor to estimate the velocity of the object. The precise estimation of an object's velocity is a vital component in the trajectory planning of space vehicles, particularly those designed for descent onto lunar or Martian terrains, such as orbiters or landers.
Technical Paper

Reduction in Flight Operational Costs by Automating Weather Forecast Updates

2024-06-01
2024-26-0440
A GE Aviation Systems report documents that the National Oceanic and Atmospheric Administration (NOAA) provided weather forecast data has a bias of 15 knots and a standard deviation of 13.3 knots for the 40 flights considered for the research. It also had a 0.47 bias in the temperature with a standard deviation of 0.27. The temperature errors are not as significant as the wind. There is a potential opportunity to reduce the operational cost by improving the weather forecast. The flight management system (FMS) currently uses the weather forecast, available before takeoff, to identify an optimized flight path with minimum operational costs depending on the selected speed mode. Such a flight plan could be optimum for a shorter flight because these flight path planning algorithms are very less susceptible to the accuracy of the weather forecast.
X