Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

On-Center Steering Model for Realistic Steering Feel based on Real Measurement Data

2024-07-02
2024-01-2994
Driving simulators allow the testing of driving functions, vehicle models and acceptance assessment at an early stage. For a real driving experience, it's necessary that all immersions are depicted as realistically as possible. When driving manually, the perceived haptic steering wheel torque plays a key role in conveying a realistic steering feel. To ensure this, complex multi-body systems are used with numerous of parameters that are difficult to identify. Therefore, this study shows a method how to generate a realistic steering feel with a nonlinear open-loop model which only contains significant parameters, particularly the friction of the steering gear. This is suitable for the steering feel in the most driving on-center area. Measurements from test benches and real test drives with an Electric Power Steering (EPS) were used for the Identification and Validation of the model.
Technical Paper

Reduction of Flow-induced Noise in Refrigeration Cycles

2024-07-02
2024-01-2972
In electrified vehicles, auxiliary units can be a dominant source of noise, one of which is the refrigerant scroll compressor. Compared to vehicles with combustion engines, e-vehicles require larger refrigerant compressors, as in addition to the interior, also the battery and the electric motors have to be cooled. Currently, scroll compressors are widely used in the automotive industry, which generate one pressure pulse per revolution due to their discontinuous compression principle. This results in speed-dependent pressure fluctuations as well as higher-harmonic pulsations that arise from reflections. These fluctuations spread through the refrigeration cycle and cause the vibration excitation of refrigerant lines and heat exchangers. The sound transmission path in the air conditioning heat exchanger integrated in the dashboard is particularly critical. Various silencer configurations can be used to dampen these pulsations.
Technical Paper

Investigation of Stator Cooling Concepts of an Electric Machine for Maximization of Continuous Power

2024-07-02
2024-01-3014
With the automotive industry's increasing focus on electromobility and the growing share of electric cars, new challenges are arising for the development of electric motors. The requirements for torque and power of traction motors are constantly growing, while installation space, costs and weight are increasingly becoming limiting factors. Moreover, there is an inherent conflict in the design between power density and efficiency of an electric motor. Thus, a main focus in today's development lies on space-saving and yet effective and innovative cooling systems. This paper presents an approach for a multi-physical optimization that combines the domains of electromagnetics and thermodynamics. Based on a reference machine, this simulative study examins a total of nine different stator cooling concepts varying the cooling duct positions and end-winding cooling concepts.
Technical Paper

Software-supported Processes for Aerodynamic Homologation of Vehicles

2024-07-02
2024-01-3004
Homologation is an important process in vehicle development and aerodynamics a main data contributor. The process is heavily interconnected: Production planning defines the available assemblies. Construction defines their parts and features. Sales defines the assemblies offered in different markets, where Legislation defines the rules applicable to homologation. Control engineers define the behavior of active, aerodynamically relevant components. Wind tunnels are the main test tool for the homologation, accompanied by surface-area measurement systems. Mechanics support these test operations. The prototype management provides test vehicles, while parts come from various production and prototyping sources and are stored and commissioned by logistics. Several phases of this complex process share the same context: Production timelines for assemblies and parts for each chassis-engine package define which drag coefficients or drag coefficient contributions shall be determined.
Technical Paper

FMCW Lidar Simulation with Ray Tracing and Standardized Interfaces

2024-07-02
2024-01-2977
In pursuit of safety validation of automated driving functions, efforts are being made to accompany real world test drives by test drives in virtual environments. To be able to transfer highly automated driving functions into a simulation, models of the vehicle’s perception sensors such as lidar, radar and camera are required. In addition to the classic pulsed time-of-flight (ToF) lidars, the growing availability of commercial frequency modulated continuous wave (FMCW) lidars sparks interest in the field of environment perception. This is due to advanced capabilities such as directly measuring the target’s relative radial velocity based on the Doppler effect. In this work, an FMCW lidar sensor simulation model is introduced, which is divided into the components of signal propagation and signal processing. The signal propagation is modeled by a ray tracing approach simulating the interaction of light waves with the environment.
Technical Paper

Measurements in the Recirculation Path of a Fuel Cell System

2024-07-02
2024-01-3009
When using "green" hydrogen, fuel cell technology plays a key role in emission-free mobility. A powertrain based on fuel cells (FC) shows its advantages over battery-electric powertrains when the requirement profile primarily demands high performance over a longer period of time, high flexible availability and short refueling times. In addition, FC achieves higher effi-ciencies than the combustion of hydrogen in a gas engine, meaning that the chemical energy is used more efficiently than with established combustion engines. When using FC technology, numerous companies in Baden-Württemberg can contribute their specific expertise from the traditional automotive construction and supplier business. This includes auxiliary units in the air (cathode) and hydrogen (anode) path, such as the air compressor, the H2 recycling pump, humidifier, cooling system, power electronics, valve and pressure tank technology as well as components of the fuel cell stack itself.
Technical Paper

Evaluation and simulation of wheel steering functionality on a Road to Rig test bench

2024-07-02
2024-01-3000
The automotive industry is continuously evolving, demanding innovative approaches to enhance testing methodologies and preventive identify potential issues. This paper proposes an advancement test approach in the area of the overall vehicle system included steering system and power train on a “Road to Rig” test bench. The research aims to revolutionize the conventional testing process by identifying faults at an early stage and eliminating the need to rely solely on field tests. The motivation behind this research is to optimize the test bench setup and bring it even closer to real field tests. Key highlights of the publication include the introduction of an expanded load spectrum, incorporating both steering angle and speed parameters along the test track. The load includes different route and driving profiles like on a freeway, overland and city drive in combination with the steering angles.
Technical Paper

Potential of Serial Hybrid Powertrain Concepts towards decarbonizing the Off-Highway Machinery

2024-06-12
2024-37-0018
Today’s engines used in Agriculture, Mining and Construction are designed for robustness and cost. Here, the Diesel powertrain is the established mainstream solution, offering long operation times without refueling at any desired power rating. In view of the steps towards Carbon Neutrality by 2050 this segment of the Transportation Sector needs to reduce its CO2 emissions. Currently, the EU and US emissions legislations (EU Stage V / EPA Tier4) do not include a CO2 reduction scheme but is expected to change with the next update towards EU Stage VI / EPA Tier5 coming into effect 2030 and after. Larger power and operation range still require the use of renewable, liquid fuels or hydrogen. The cost-up of such fuels could be counterbalanced by more efficient engines in combination with a hybridized powertrain.
Technical Paper

Experimental and Simulation Study of Zero Flow Impact on Hybrid Vehicle Emissions

2024-06-12
2024-37-0036
Combustion engines in hybrid vehicles turn on and off several times during a typical passenger car trip. Each engine restart may pose a risk of excessive tailpipe emissions in real-drive conditions if the after-treatment system fails to maintain an adequate temperature level during zero flow. In view of the tightening worldwide tailpipe emissions standards and real-world conformity requirements, it is important to detect and resolve such risks via cost-effective engineering tools relying on accurate 3d analysis of the thermal and chemical behavior of exhaust systems. In this work, we present a series of experiments to examine the impact of zero-flow duration on the exhaust system cooling and subsequent emissions risk. We also present a catalyst model calibrated to predict the 3d thermal and chemical behavior under normal and zero flow conditions. Particular emphasis is given to the phenomena of free convection and thermal radiation dominating the heat transfer at zero flow.
Technical Paper

Simulation and test methods on NVH performance of axle system

2024-06-12
2024-01-2950
For electric vehicles, road noise, together with wind noise, is the most important contributor for vehicle interior noise. Road noise is very dependent on the NVH behavior of axle system including wheels and tires. Axle system is part of vehicle platform which should be compatible with different body variants. Therefore, il is important to characterize the NVH performance of an axle system independently of car body structure, so that the design the axle can be optimized at the early stage according to the global requirements of all the related vehicles. The best way to characterize the NVH performance of an axle system is to measure the blocked forces on an appropriate test rig. However, the measurement of blocked forces from an axle system requires very stiff boundary conditions which is difficult to achieve in practice. For axles with rigid mountings, it is nearly impossible to measure the blocked forces on test rig.
Technical Paper

Acoustic quality assurance during End of Line engine test approval

2024-06-12
2024-01-2922
Liebherr Machines Bulle SA designs and produces High-quality diesel engines, injection systems as well as hydraulic components. Liebherr has an Acoustic End of Line (A-EoL) system on serial test benches. All engines are measured, and noises are evaluated by operators. This subjective evaluation leads to dispersion on the evaluations, particularly for whining noise. To achieve Swiss quality requirements and ensure customer satisfaction, Liebherr wishes to define a new methodology to find a quantitative and objective criterion to set a robust engine noise compliance standard. This new methodology is based on near field microphone measurement of an engine run-down. First, whining noise signatures are extracted from the raw signal. Secondly, psychoacoustic indicators are calculated on the isolated signatures. Thresholds are then established to validate engine deliveries.
Technical Paper

On Improving CLEAN-SC Maps in The Wind Tunnel

2024-06-12
2024-01-2936
When travelling in an open-jet wind tunnel, the path of an acoustic wave is affected by the flow causing a shift of source positions in acoustical maps of phased arrays outside the flow. The well-known approach of Amiet attempts to correct for this effect by computing travel times between microphones and map points based on the assumption that the boundary layer of the flow, the so-called shear-layer, is infinitely thin and refracts the acoustical ray in a conceptually analogy to optics. However, in reality, the turbulent nature of both the not-so thin shear-layer and the acoustic emission process itself causes an additional smearing of sources in acoustic maps, which in turn causes deconvolution methods based on these maps - the most prominent example being CLEAN-SC - to produce certain ring effects, so-called halos, around sources.
Technical Paper

Transmission of sound under the influence of various environmental conditions

2024-06-12
2024-01-2933
Electrified vehicles are particularly quiet, especially at low speeds due to the absence of combustion noises. This is why there are laws worldwide for artificial driving sounds to warn pedestrians. These sounds are generated using a so-called Acoustic Vehicle Alerting System (AVAS) which must maintain certain minimum sound pressure levels in specific frequency ranges at low speeds. The creation of the sound currently involves an iterative and sometimes time-consuming process that combines composing the sound on a computer with measuring the levels with a car on an outside noise test track. This continues until both the legal requirements and the subjective demands of vehicle manufacturers are met. To optimize this process and reduce the measurement effort on the outside noise test track, the goal is to replace the measurement with a simulation for a significant portion of the development.
Technical Paper

Advanced squeak and rattle noise prediction for vehicle interior development – numerical simulation and experimental validation

2024-06-12
2024-01-2925
Squeak and rattle (SAR) noise audible inside a passenger car causes the product quality perceived by the customer to deteriorate. The consequences are high warranty costs and a loss in brand reputation for the vehicle manufacturer in the long run. Therefore, SAR noise must be prevented. This research shows the application and experimental validation of a novel method to predict SAR noise on an actual vehicle interior component. The novel method is based on non-linear theories in the frequency domain. It uses the harmonic balance method in combination with the alternating frequency/time domain method to solve the governing dynamic equations. The simulation approach is part of a process for SAR noise prediction in vehicle interior development presented herein. In the first step, a state-of-the-art linear frequency-domain simulation estimates an empirical risk index for SAR noise emission. Critical spots prone to SAR noise generation are located and ranked.
Technical Paper

Adaptive Inverse Control of Vibration Exciter for Tracking Target Acceleration of a Car Subsystem

2024-06-12
2024-01-2920
This research aims to develop an inverse control method capable of adaptively simulating dynamic models of car subsystems in the rig-test condition. Accurate simulation of the actual vibration conditions is one of the most crucial factors in realizing reliable rig-test platforms. However, most typical rig tests are conducted under simple random or harmonic sweep conditions. Moreover, the conventional test methods are hard to directly adapt to the actual vibration conditions when switching the dynamic characteristics of the subsystem in the rig test. In the present work, we developed an inverse controller to adaptively control the vibration exciter referring to the target vibration signal. An adaptive LMS filter, employed for the control algorithm, updated the filter weights in real time by referring to the target and the measured acceleration signals.
Technical Paper

Development of an Evaluation Methodology for PIV Measurements of Low-Frequency Flow Phenomena on the Vehicle Underbody

2024-06-12
2024-01-2939
Aeroacoustics is important in the automotive industry, as it significantly influences driving comfort. Particularly in the case of battery electric vehicles (BEVs), the flow noise is already crucial at lower driving speeds, since these generate barely any drive noise and the masking effects produced by the engine are eliminated. Due to the increasing importance of drag minimization and elimination of the exhaust system, the underbody of BEVs is typically very streamlined and exhibits a low acoustic interference potential. However, even small geometric modifications to the vehicle can lead to changes in the flow around the vehicle and consequently to significant noise sources. Thus, significant flow resonances in the low frequency range below 30 Hz have been detected on certain vehicle configurations. Initial investigations have shown that the flow around the front wheel spoilers is relevant for the development of the flow phenomenon.
Technical Paper

Multi-Scale Modeling of Selective Laser Melting Process

2024-06-01
2024-26-0415
The Selective Laser Melting (SLM) process is employed in high-precision layer-by-layer Additive Manufacturing (AM) on powder bed and aims to fabricate high-quality structural components. To gain a comprehensive understanding of the process and its optimization, both modeling and simulation in conjunction with extensive experimental studies along with laser calibration studies have been attempted. Multiscale and multi-physics-based simulations have the potential to bring out a new level of insight into the complex interaction of laser melting, solidification, and defect formation in the SLM parts. SLM process encompasses various physical phenomena during the formation of metal parts, starting with laser beam incidence and heat generation, heat transfer, melt/fluid flow, phase transition, and microstructure solidification. To effectively model this Multiphysics problem, it is imperative to consider different scales and compatible boundary conditions in the simulations.
Technical Paper

Configuration and Design of Mobile Checkout System for Ground Testing of Winged Body Reusable Launch Vehicle

2024-06-01
2024-26-0454
Abstract Unlike conventional launch vehicles the winged body reusable launch vehicle needs to be tested and evaluated for its functionality during the pre-flight preparation at the runway. The ground based checkout systems for the avionics and actuators performance testing during pre-flight evaluation and actuation are not designed for rapid movement. The new kind of launch vehicle with conventional rocket motor first-stage and winged body upper-stage demands the system testing at Launchpad and at runway. In the developmental flights of the winged body part of the vehicle, the pre-flight testing needs to be carried out extensively at runway. The safety protocol forbids the permanent structure for hosting the checkout system near runway. The alternative is the development of a rapidly deployable and removable checkout system. A design methodology adopting conventional industrial instrumentation systems and maintaining mobility is presented.
Technical Paper

Experimental Analysis of Force Recovery and Response Time using Strain Measurement Sensors in Stress Wave Force Balance

2024-06-01
2024-26-0451
Severe problem of aerodynamic heating and drag force are inherent with any hypersonic space vehicle like space shuttle, missiles etc. For proper design of vehicle, the drag force measurement become very crucial. Ground based test facilities are employed for these estimates along with any suitable force balance as well as sensors. There are many sensors (Accelerometer, Strain gauge and Piezofilm) reported in the literature that is used for evaluating the actual aerodynamic forces over test model in high speed flow. As per previous study, the piezofilm also become an alternative sensor over the strain gauges due to its simple instrumentation. For current investigation, the piezofilm and strain gauge sensors have mounted on same stress force balance to evaluate the response time as well as accuracy of predicted force at the same instant. However, these force balance need to be calibrated for inverse prediction of the force from recorded responses.
Technical Paper

Thermal Analysis of Prismatic Core Sandwich Structural Panel for Hypersonic Application

2024-06-01
2024-26-0422
Hypersonic flight vehicles have potential applications in strategic defence, space missions, and future civilian high-speed transportation systems. However, structural integration has significant challenges due to extreme aero-thermo-mechanical coupled effects. Scramjet-powered air-breathing hypersonic vehicles experience extreme heat loads induced by combustion, shock waves and viscous heat dissipation. An active cooling thermal protection system for scramjet applications has the highest potential for thermal load management, especially for long-duration flights, considering the weight penalty associated with the heavier passive thermal insulation structures. We consider the case of active cooling of scramjet engine structural walls with endothermic hydrocarbon fuel. We have developed a semi-analytical quasi-2D heat transfer model considering a prismatic core single cooling channel segment as a representative volume element (RVE) to analyse larger-scale problems.
X