Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Cyber Security Approval Criteria: Application of UN R155

2024-07-02
2024-01-2983
The UN R155 regulation is the first automotive cyber security regulation and has made security a mandatory approval criterion for new vehicle types. This establishes internationally harmonized security requirements for market approval. As a result, the application of the regulation presents manufacturers and suppliers with the challenge of demonstrating compliance. At process level the implementation of a Cyber Security Management System (CSMS) is required while at product level, the Threat Assessment and Risk Analysis (TARA) forms the basis to identify relevant threats and corresponding mitigation strategies. Overall, an issued type approval is internationally recognized by the member states of the UN 1958 Agreement. International recognition implies that uniform assessment criteria are applied to demonstrate compliance and to decide whether security efforts are sufficient.
Technical Paper

Simulation of Hydrogen Combustion in Spark Ignition Engines Using a Modified Wiebe Model

2024-07-02
2024-01-3016
Due to its physical and chemical properties, hydrogen is an attractive fuel for internal combustion engines, providing grounds for studies on hydrogen engines. It is common practice to use a mathematical model for basic engine design and an essential part of this is the simulation of the combustion cycle, which is the subject of the work presented here. One of the most widely used models for describing combustion in gasoline and diesel engines is the Wiebe model. However, for cases of hydrogen combustion in DI engines, which are characterized by mixture stratification and in some cases significant incomplete combustion, practically no data can be found in the literature on the application of the Wiebe model. Based on Wiebe's formulas, a mathematical model of hydrogen combustion has been developed. The model allows making computations for both DI and PFI hydrogen engines. The parameters of the Wiebe model were assessed for three different engines in a total of 26 operating modes.
Technical Paper

Turbocharging system selection for a hydrogen-fuelled spark-ignition internal combustion engine for heavy-duty applications

2024-07-02
2024-01-3019
Nowadays, green hydrogen can play a crucial role in a successful clean energy transition, thus reaching net zero emissions in the transport sector. Moreover, hydrogen exploitation in internal combustion engines is favoured by its suitable combustion properties and quasi-zero harmful emissions. High flame speeds enable a lean combustion approach, which provides high efficiency and reduces NOx emissions. However, high air flow rates are required to achieve the load levels typical of heavy-duty applications. In this framework, the present study aims to investigate the required boosting system of a 6-cylinder, 13-liter heavy-duty spark ignition engine through 1D numerical simulation. A comparison among various architectures of the turbocharging system and the size of each component is presented, thus highlighting limitations and potentialities of each architecture and providing important insights for the selection of the best turbocharging system.
Technical Paper

Radar-based Approach for Side-Slip Gradient Estimation

2024-07-02
2024-01-2976
In vehicle ego-motion estimation, vehicle control, and advanced driver assist systems the vehicle dynamics are described by a few key parameters. The side-slip gradient, being one of them, is used to model the lateral behavior of the vehicle. This parameter is rarely known precisely, since it depends on the vehicle’s mass distribution, its tires, and even the chassis setup. Thus, an online-estimation of the side-slip gradient is beneficial, especially in serial applications. Estimating the side-slip gradient with conventional vehicle sensors such as wheel-speed, steering, and inertial sensors poses a significant challenge since considerable dynamic excitation of the vehicle is required, which is uncommon in normal driving. Here, radar sensors open new opportunities in the estimation of such vehicle dynamics parameters since they allow for an instantaneous measurement of the lateral velocity.
Technical Paper

Towards a New Approach for Reducing the Safety Validation Effort of Driving Functions Using Prediction Divergence

2024-07-02
2024-01-3003
An essential component in the approval of advanced driver assistance systems (ADAS) and automated driving systems (ADS) is the quantification of residual risk, which demonstrates that hazardous behavior (HB) occurs less frequently than specified by a corresponding acceptance criterion. In the case of HB with high potential impact severity, only very low accepted frequencies of occurrence are tolerated. To avoid uncertainties due to abstractions and simplifications in simulations, the proof of the residual risk in systems such as advanced emergency braking systems (AEBS) is often partially or entirely implemented as system-level field test. However, the low rates and high confidence required, common for residual risk demonstrations, result in a significant disadvantage of these field tests: the long driving distance required.
Technical Paper

The 3D-CFD Contribution to H2 Engine Development for CV and Off-Road Application

2024-07-02
2024-01-3017
The hydrogen engine is one of the promising technologies that enables carbon-neutral mobility, especially in heavy-duty on- or off-road applications. In this paper, a methodological procedure for the design of the combustion system of a hydrogen-fueled, direct injection spark ignited commercial vehicle engine is described. In a preliminary step, the ability of the commercial 3D computational fluid dynamics (CFD) code AVL FIRE classic to reproduce the characteristics of the gas jet, introduced into a quiescent environment by a dedicated H2 injector, is established. This is based on two parts: Temporal and numerical discretization sensitivity analyses ensure that the spatial and temporal resolution of the simulations is adequate, and comparisons to a comprehensive set of experiments demonstrate the accuracy of the simulations. The measurements used for this purpose rely on the well-known schlieren technique and use helium as a safe substitute for H2.
Technical Paper

How Can a Sustainable Energy Infrastructure based on Renewable Fuels Contribute to Global Carbon Neutrality?

2024-07-02
2024-01-3023
Abstract. With the COP28 decisions the world is thriving for a future net-zero-CO2 society and the and current regulation acts, the energy infrastructure is changing in direction of renewables in energy production. All industry sectors will extend their share of direct or indirect electrification. The question might arise if the build-up of the renewables in energy production is fast enough. Demand and supply might not match in the short- and mid-term. The paper will discuss the roadmaps, directions and legislative boundary parameter in the regenerative energy landscape and their regional differences. National funding on renewables will gain an increasing importance to accelerate the energy transformation. The are often competing in attracting the same know-how on a global scale. In addition the paper includes details about energy conversion, efficiency as well as potential transport scenarios from production to the end consumer.
Technical Paper

Fitting Automotive Quality and Safety Expectations to Free and Open Source Software

2024-07-02
2024-01-2984
Due to manifold benefits compared to proprietary software solutions, free and open source software (FOSS) in general, and Linux especially becomes more and more relevant for embedded solutions in the automotive domain, especially in High Performance Computing Platforms (HPC). However, taking over liability and warranty for a FOSS software-based problem raises the problem of software quality assurance, and thus respectively risk control. In order to control and minimize the residual risk of a product or service, the traditional and well-accepted measure in the automotive domain is to assess the engineering processes and resulting work products via a process assessment model given by the ASPICE maturity model, as well as requirements from functional safety standards for safety related functions. The underlying process reference model of ASPICE assumes software development performed and controlled by an organization.
Technical Paper

Miller Cycle and Internal EGR in Diesel Engines Using Alternative Fuels

2024-07-02
2024-01-3020
The Single Cylinder Research Engine (SCRE) at the Institute of Internal Combustion Engines and Powertrain Systems is equipped with a variable valve train that allows to switch between regular intake valve lift and early intake valve closing (Miller). On the exhaust side, a secondary valve lift on each valve is possible with adjustable back pressure and thus the possibility of realising internal EGR. In combination with alternative fuels, even if they are Drop-In capable as HVO, properties differ and can influence the emission and efficiency behaviour. The investigations of this paper are focusing on regenerative Drop-In fuel (HVO), fossil fuel (B7), and an oxygenate (OME), that needs adaptions at the engine control unit, but offers further emission potential. By commissioning a 2-stage boost system, it is possible to fully equalize the air mass in Miller mode compared to the normal valve lift.
Technical Paper

Computational Method to Determine the Cooling Airflow Utilization Ratio of Passenger Cars Considering Component Deformation

2024-07-02
2024-01-2975
In order to improve the efficiency of passenger cars, developments focus on decreasing their aerodynamic drag, part of which is caused by cooling air. Thus, car manufacturers try to seal the cooling air path to prevent leakage flows. Nevertheless, gaps between the single components of the cooling air path widen due to the deformation of components under aerodynamic load. For simulating the cooling airflow utilization ratio (CAUR), computational fluid dynamics (CFD) simulations are used, which neglect component deformation. In this paper, a computational method aiming at sufficient gap resolution and determining the CAUR of passenger cars under the consideration of component deformation is developed. Therefore, a partitioned approach of fluid structure interaction (FSI) simulations is used. The fluid field is simulated in OpenFOAM, whereas the structural simulations are conducted using Pam-Crash.
Technical Paper

Numerical Investigation of Injection and Mixture Formation in Hydrogen Combustion Engines by Means of Different 3D-CFD Simulation Approaches

2024-07-02
2024-01-3007
For the purpose of achieving carbon-neutrality in the mobility sector by 2050, hydrogen can play a crucial role as an alternative energy carrier, not only for direct usage in fuel cell-powered vehicles, but also for fueling internal combustion engines. This paper focuses on the numerical investigation of high-pressure hydrogen injection and the mixture formation inside a high-tumble engine with a conventional liquid fuel injector for passenger cars. Since the traditional 3D-CFD approach of simulating the inner flow of an injector requires a very high spatial and temporal resolution, the enormous computational effort, especially for full engine simulations, is a big challenge for an effective virtual development of modern engines. An alternative and more pragmatic lagrangian 3D-CFD approach offers opportunities for a significant reduction in computational effort without sacrificing reliability.
Technical Paper

Reduction of Flow-induced Noise in Refrigeration Cycles

2024-07-02
2024-01-2972
In electrified vehicles, auxiliary units can be a dominant source of noise, one of which is the refrigerant scroll compressor. Compared to vehicles with combustion engines, e-vehicles require larger refrigerant compressors, as in addition to the interior, also the battery and the electric motors have to be cooled. Currently, scroll compressors are widely used in the automotive industry, which generate one pressure pulse per revolution due to their discontinuous compression principle. This results in speed-dependent pressure fluctuations as well as higher-harmonic pulsations that arise from reflections. These fluctuations spread through the refrigeration cycle and cause the vibration excitation of refrigerant lines and heat exchangers. The sound transmission path in the air conditioning heat exchanger integrated in the dashboard is particularly critical. Various silencer configurations can be used to dampen these pulsations.
Technical Paper

Investigation of Stator Cooling Concepts of an Electric Machine for Maximization of Continuous Power

2024-07-02
2024-01-3014
With the automotive industry's increasing focus on electromobility and the growing share of electric cars, new challenges are arising for the development of electric motors. The requirements for torque and power of traction motors are constantly growing, while installation space, costs and weight are increasingly becoming limiting factors. Moreover, there is an inherent conflict in the design between power density and efficiency of an electric motor. Thus, a main focus in today's development lies on space-saving and yet effective and innovative cooling systems. This paper presents an approach for a multi-physical optimization that combines the domains of electromagnetics and thermodynamics. Based on a reference machine, this simulative study examins a total of nine different stator cooling concepts varying the cooling duct positions and end-winding cooling concepts.
Technical Paper

Neural Network Modeling of Black Box Controls for Internal Combustion Engine Calibration

2024-07-02
2024-01-2995
The calibration of Engine Control Units (ECUs) for road vehicles is challenged by stringent legal and environmental regulations, coupled with short development cycles. The growing number of vehicle variants, although sharing similar engines and control algorithms, requires different calibrations. Additionally, modern engines feature increasingly number of adjustment variables, along with complex parallel and nested conditions within the software, demanding a significant amount of measurement data during development. The current state-of-the-art (White Box) model-based ECU calibration proves effective but involves considerable effort for model construction and validation. This is often hindered by limited function documentation, available measurements, and hardware representation capabilities. This article introduces a model-based calibration approach using Neural Networks (Black Box) for two distinct ECU functional structures with minimal software documentation.
Technical Paper

Optimization-Based Battery Thermal Management for Improved Regenerative Braking in CEP Vehicles

2024-07-02
2024-01-2974
The courier express parcel service industry (CEP industry) has experienced significant changes in the recent years due to increasing parcel volume. At the same time, the electrification of the vehicle fleets poses additional challenges. A major advantage of battery electric CEP vehicles compared to internal combustion engine vehicles is the ability to regenerate the kinetic energy of the vehicle in the frequent deceleration phases during parcel delivery. If the battery is cold the maximum recuperation power of the powertrain is limited by a reduced chemical reaction rate inside the battery. In general, the maximum charging power of the battery depends on the state of charge and the battery temperature. Due to the low power demand for driving during CEP operation, the battery self-heating is comparably low under cold ambient conditions. Without active conditioning of the battery, potential regenerative energy is lost as a result of the cold battery.
Technical Paper

Enhancing Urban AEB Systems: Simulation-Based Analysis of Error Tolerance in Distance Estimation and Road-Tire Friction Coefficients

2024-07-02
2024-01-2992
Autonomous Emergency Braking (AEB) systems are critical in preventing collisions, yet their effectiveness hinges on accurately estimating the distance between the vehicle and other road users, as well as understanding road conditions. Errors in distance estimation can result in premature or delayed braking and varying road conditions alter road-tire friction coefficients, affecting braking distances. Advancements in sensor technology and deep learning have improved vehicle perception and real-world understanding. The integration of advanced sensors like LiDARs has significantly enhanced distance estimation. Cameras and deep neural networks are also employed to estimate the road conditions. However, AEB systems face notable challenges in urban environments, influenced by complex scenarios and adverse weather conditions such as rain and fog. Therefore, investigating the error tolerance of these estimations is essential for the performance of AEB systems.
Technical Paper

Set-up of an in-car system for investigating driving style on the basis of the 3D-method

2024-07-02
2024-01-3001
Investigating human driver behavior enhances the acceptance of the autonomous driving and increases road safety in heterogeneous environments with human-operated and autonomous vehicles. The previously established driver fingerprint model, focuses on the classification of driving style based on CAN bus signals. However, driving styles are inherently complex and influenced by multiple factors, including changing driving environments and driver states. To comprehensively create a driver profile, an in-car measurement system based on the Driver-Driven vehicle-Driving environment (3D) framework is developed. The measurement system records emotional and physiological signals from the driver, including ECG signal and heart rate. A Raspberry Pi camera is utilized on the dashboard to capture the driver's facial expressions and a trained convolutional neural network (CNN) recognizes emotion. To conduct unobtrusive ECG measurements, an ECG sensor is integrated into the steering wheel.
Technical Paper

Optimal and Prototype Dimensioning of Electrified Drives for Automated Driving

2024-07-02
2024-01-3021
Electrified drives will change significantly in the wake of the further introduction of automated driving functions. Precise drive dimensioning, taking automated driving into account, opens up further potential in terms of drive operation and efficiency as well as optimal component design. Central element for unlocking the dimensioning potentials is the knowledge about the driving functions and their application. In this paper the implications of automated driving on the drive and component design are discussed. A process and a virtual toolchain for electric drive development from concept optimization to detailed component dimensioning is presented. The process is subdivided into a concept optimization part for finding the optimal drive topology and layout and a detailed prototype dimensioning process, where the final detailed drive dimensioning is carried out.
Technical Paper

FMCW Lidar Simulation with Ray Tracing and Standardized Interfaces

2024-07-02
2024-01-2977
In pursuit of safety validation of automated driving functions, efforts are being made to accompany real world test drives by test drives in virtual environments. To be able to transfer highly automated driving functions into a simulation, models of the vehicle’s perception sensors such as lidar, radar and camera are required. In addition to the classic pulsed time-of-flight (ToF) lidars, the growing availability of commercial frequency modulated continuous wave (FMCW) lidars sparks interest in the field of environment perception. This is due to advanced capabilities such as directly measuring the target’s relative radial velocity based on the Doppler effect. In this work, an FMCW lidar sensor simulation model is introduced, which is divided into the components of signal propagation and signal processing. The signal propagation is modeled by a ray tracing approach simulating the interaction of light waves with the environment.
Technical Paper

A Novel Approach for the Safety Validation of Emergency Intervention Functions using Extreme Value Estimation

2024-07-02
2024-01-2993
As part of the safety validation of advanced driver assistance systems (ADAS) and automated driving (AD) functions, it is necessary to demonstrate that the frequency at which the system exhibits hazardous behavior (HB) in the field is below an acceptable threshold. This is typically tested by observation of the system behavior in a field operational test (FOT). For situations in which the system under test (SUT) actively intervenes in the dynamic driving behavior of the vehicle, it is assessed whether the SUT exhibits HB. Since the accepted threshold values are generally small, the amount of data required for this strategy is usually very large. This publication proposes an approach to reduce the amount of data required for the evaluation of emergency intervention systems with a state machine based intervention logic by including the time periods between intervention events in the validation process.
X