Refine Your Search

Topic

Search Results

Technical Paper

Rationale and Process for Developing an SAE Damping Test Method

2023-05-08
2023-01-1050
The paper discusses the process of developing an SAE damping measurement test method that is suitable for testing bars that are not made of steel or are difficult to measure with the traditional Oberst bar method. The method is based on measuring mechanical impedance (force over velocity) of a vibrating bar. The bar is excited at the center using a shaker and hence it is also called a CenterPoint method. The paper discusses the round robin tests that have been conducted so far and discusses the test results that will help develop the standard. The paper discusses the variability of the round robin test results within a laboratory, between laboratories, as well as the coefficient of variation for these measurements. The paper also discusses various parameters that should be carefully monitored in this study, that otherwise could affect the precision of the test procedure.
Technical Paper

Hybrid Laminated Panels Addressing Acoustic Issues in Vehicles

2021-08-31
2021-01-1086
Laminated steel body panels are used in different applications in vehicles, such as dash panels and wheel wells. A part made out of laminated steel has the potential to provide structure-borne noise reduction and also improve the airborne noise reduction of the part compared to a monolithic part. The use of laminated steel has been more critical when there are deep draws on the part as the deep draws cause localized resonances which degrade the acoustic performance significantly. However, due to lightweighting demands, hybrid laminated panels, commonly known as acoustic patch laminates have become very attractive. This paper discusses the damping and sound transmission loss performances of a dash panel part with monolithic, laminated, and acoustic patch panels.
Technical Paper

Developing a Custom Data Acquisition Software Package for a Self-contained Acoustic Test Facility

2019-06-05
2019-01-1501
This paper provides an overview of a custom software developed to obtain measurement data in a self-contained acoustic test facility system used for conducting random incidence sound absorption tests and sound transmission loss tests on small samples in accordance with SAE J2883 and J1400 standards, respectively. Special features have been incorporated in the software for the user to identify anomalies due to extraneous noise intrusion and thereby to obtain good data. The paper discusses the thoughts behind developing user-friendly algorithms and graphical user interfaces (GUI) for the sound generation, control, data acquisition, signal processing, and identifying anomalies.
Technical Paper

A Modal Study of Damping Treatments to Improve Low Frequency Sound Transmission Loss of a Structure

2017-06-05
2017-01-1852
Most of NVH related issues start from the vibration of structures where often the vibration near resonance frequencies radiates the energy in terms of sound. This phenomenon is more problematic at lower frequencies by structureborne excitation from powertrain or related components. This paper discusses a laboratory based case study where different visco-elastic materials were evaluated on a bench study and then carried on to a system level evaluation. A body panel with a glazing system was used to study both airborne and structureborne noise radiation. System level studies were carried out using experimental modal analysis to shift and tune the mode shapes of the structure using visco-elastic materials with appropriate damping properties to increase the sound transmission loss. This paper discusses the findings of the study where the mode shapes of the panel were shifted and resulted in an increase in sound transmission loss.
Technical Paper

SAE and Other Standards for Determining Acoustical Properties of Sound Package Materials

2015-06-15
2015-01-2207
Test standards are essential for evaluating the performance of a product properly and for developing a data base for the product. This paper discusses various standards that are available for determining the acoustical performance of sound package materials. The paper emphasizes various SAE standards that are available in this area, the reasons why these standards are important to the researchers working in the mobility industry, the history behind the development of these standards, and how they are different from standards that are available from other standards organization on similar topics.
Journal Article

A Design of Experiments Analysis to Determine the Importance of Relevant Factors on the STL of an Acoustic Part

2013-05-13
2013-01-2009
This paper discusses a design of experiments (DOE) analysis that was performed to understand relevant factors that influence the acoustic performance of a sound package part used in the commercial vehicle industry for the floor mat application. The acoustic performance of the sound package part which is a double wall system and constructed of a barrier and cellular decoupler material is expressed in terms of sound transmission loss (STL). An experiment was designed using the Taguchi DOE technique with three factors and three levels to acquire the STL data and is discussed in the paper. The results of the DOE analysis and the confidence in the model are discussed as well as the benefits of predicting expected STL performances are mentioned in the paper.
Technical Paper

Damping Performance Using a Panel Structure

2013-05-13
2013-01-1938
The performance of damping materials is generally evaluated by experimental methods. However most damping materials used in the transportation industry cannot be excited by itself. Therefore, the measurements are generally made by exciting a damped system, where the damped system extends from a bar to a panel. The paper reviews various damped systems and excitation methodologies and discusses some of the limitations of a bar to study the damping performance for different applications. It discusses a methodology where a damped panel is mounted on a fixture and the fixture is excited with a shaker. The paper discusses data acquisition and data reduction procedures to obtain the damping performance of laminated steel acoustic patch products on a third octave band frequency basis.
Technical Paper

The Thought Process for Developing Sound Package Treatments for a Vehicle

2011-05-17
2011-01-1679
This paper discusses the thought process that one needs to go through for developing an appropriate sound package treatment for a vehicle. In the development process one needs to put proper emphasis on understanding the source, path, and the receiver system. One needs to have an understanding on how to reduce the noise at the source, path, and/or receiver location. One may need to conduct a feasibility study of the benefits of various noise control options. In terms of sound package treatments one needs to understand the fundamentals of acoustical materials how they work and why one material performs differently than another one, as well as the importance of a well documented specification that every supplier has to meet.
Technical Paper

Random Incidence Sound Absorption Measurement of Automotive Seats in Small Size Reverberation Rooms

2007-05-15
2007-01-2194
Random incidence sound absorption measurements of automotive components such as floor carpets, seats, headliners and hoodliners are important during the design and development of noise control treatments in a vehicle. Small volume reverberation rooms [1]1 have been widely used in practice to determine the absorption properties of those components. The SAE Acoustical Materials Committee has organized a task force to develop a standard procedure for measuring random incidence sound absorption properties of flat samples, as well as automotive components in small reverberation rooms. Statistical analysis and correlation study between large reverberation rooms and small reverberation rooms of flat samples using data acquired from a recent round robin study were reported in SAE Paper 2005-01-2284 [2, 3].
Technical Paper

Predicting the Acoustical Performance of Weak Paths in a Sound Package System

2005-05-16
2005-01-2520
The presence of any weak paths or leakage limits the best design and the acoustical performance of a sound package system in a vehicle. Techniques to predict the response at the design level could help in improving the performance of the sound package system. This paper discusses the development, verification, and implementation of an analytical technique for predicting the acoustical performance of a sound package system based on the principles of sound transmission coefficient and the surface area covered by each sub-system. This technique is especially suitable for predicting the acoustical performance of a weak path created by passthroughs or plugs in a sound package system. Initially, a simple system was developed and studied to verify the model. The predicted values were compared with the measured values. Based on the comparison, different parameters were identified and modified such that the model agrees closely with the measured data.
Technical Paper

A Development Procedure to Improve the Acoustical Performance of a Dash System

2005-05-16
2005-01-2515
This paper discusses a development procedure that was used to evaluate the acoustical performance of one type of dashpanel construction over another type for a given application. Two very different constructions of dashpanels, one made out of plain steel and one made out of laminated steel, were studied under a series of different test conditions to understand which one performs better, and then to evaluate how to improve the overall performance of the inferior dashpanel for a given application. The poorly performing dashpanel was extensively tested with dashmat and different passthroughs to understand the acoustic strength of different passthroughs, to understand how passthroughs affect the overall performance of the dash system, and subsequently to understand how the performance can be improved by improving one of the passthroughs.
Technical Paper

Development of a Small Size Reverberation Room Standardized Test Procedure for Random Incidence Sound Absorption Testing

2005-05-16
2005-01-2284
Small reverberation rooms are used in common practice for determining random incidence sound absorption properties of flat materials and finished parts. Based on current small reverberation room usage in the automotive industry, there is a need for standardization that would bring about an appropriate level of consistency and repeatability. To respond to this need, a feasibility study is being pursued by an SAE task force, under the direction of the Acoustical Materials Committee, to develop a small volume reverberation room test method for conducting random incidence sound absorption tests. In addition to an accepted test method for small reverberation rooms, a data driven correlation that relates full size reverberation room absorption testing to small size reverberation room testing would be beneficial in understanding the usage of both. A Round Robin study has been underway for more than three years and will be completed in 2005.
Technical Paper

A Design Study to Determine the Impact of Various Parameters on Door Acoustics

2003-05-05
2003-01-1430
Once the design of a door sheetmetal and accessories is confirmed, the acoustics of the door system depends on the sound package assembly. This essentially consists of a watershield which acts as a barrier and a porous material which acts as an absorber. The acoustical performance of the watershield and the reverberant sound build-up in the door cavity control the performance. This paper discusses the findings of a design study that was developed based on design of experiments (DOE) concepts to determine which parameters of the door sound package assembly are important to the door acoustics. The study was based on conducting a minimum number of tests on a five factor - two level design that covered over 16 different design configurations. In addition, other measurements were made that aided in developing a SEA model which is also compared with the findings of the results of the design study.
Technical Paper

A Data Analysis Approach to Understand the Value of a Damping Treatment for Vehicle Interior Sound

2003-05-05
2003-01-1409
An in-vehicle study was conducted to understand how damping treatments on the floor of a vehicle affect the interior sound in the vehicle. Three differently formulated damping treatments were tested on three similar sport utility vehicles for this purpose. Numerous on-road sound and vibration data were collected under different operating conditions, and were reduced to understand the value of the damping treatment in controlling interior noise caused by powertrain and rolling-tire/road interaction. The paper discusses different data analysis procedures that were used in this study to understand whether there is a damping treatment that performs better than others in spite of variances in test vehicles, and still minimize the adverse influence of other variables that are related to the vehicle performance variation itself.
Technical Paper

Automotive Noise and Vibration Control Practices in the New Millennium

2003-05-05
2003-01-1589
The approaches used to develop an NVH package for a vehicle have changed dramatically over the last several years. New noise and vibration control strategies have been introduced, new materials have been developed, advanced testing techniques have been implemented, and sophisticated computer modeling has been applied. These approaches help design NVH solutions that are optimized for cost, performance, and weight. This paper explains the NVH practices available for use in designing vehicles for the new millennium.
Technical Paper

A Graduated Assessment of a Sprayable Waterborne Damping Material as a Viable Acoustical Treatment

2003-05-05
2003-01-1588
Damping treatments have been used in reducing structure-borne noise in vehicles for many years. Although sheet based heat bondable mastic products (often called melt sheets) are quite common in the industry, sprayable products have several advantages and have been cited in the literature. This paper discusses findings of numerous structure-borne noise studies that were conducted on sprayable materials with different base-chemistries. The analyses show that a waterborne product is the most advantageous damping treatment in an automotive assembly process. The results also reveal that application of this product provides effective damping treatment as well as reduces structurally radiated noise.
Technical Paper

Feasibility of a Standardized Test Procedure for Random Incidence Sound Absorption Tests Using a Small Size Reverberation Room

2003-05-05
2003-01-1572
In the automotive industry, random incidence sound absorption tests are conducted on flat material samples as well as on finished components such as headliners, seats, and floor carpet systems. This paper discusses a feasibility study that is being pursued by an SAE task force, under the direction of the Acoustical Materials Committee, to develop a small volume reverberation room test method for conducting random incidence sound absorption tests. This method has the potential to be suitable for flat material and component testing. A round-robin test program is being conducted to determine variability due to test procedures, room size differences and laboratory differences. The paper discusses the selection of test samples and provides an update on the findings of the round-robin test study.
Technical Paper

Application of Noise Control Materials to Trucks and Buses

2002-11-18
2002-01-3063
This paper provides an overview of sound and sound package (noise control) materials that are used in heavy trucks and buses. Transportation noise is a longstanding and complex problem. The challenge is to have a thorough understanding of the source-path-receiver relationship with respect to the noise generation and propagation such that one can find feasible solutions and applications of noise control materials. This paper discusses different types of noise control materials and also provides some examples of different noise control material applications.
Technical Paper

A Tool for Predicting Interior Sound Package Treatment in a Truck

2001-11-12
2001-01-2807
This paper discusses an analytical tool that has been developed to predict what types of interior sound package treatments may be necessary in a truck cab to meet a predetermined target sound level at the driver location. The steps that were taken to develop this tool involved a combination of experimental measurement and analytical based studies. Measurements were conducted to identify the acoustic strengths of the major noise paths through which sound travels from outside to inside the truck. These findings were then used to develop a sound package that reduced the vehicle interior noise to meet the target. Measurements were primarily made on a chassis roll dynamometer with final road verification to substantiate the dynamometer data. Data obtained from these measurements were also used in the analytical model that predicts the impact of various acoustics parts in the vehicle, and has the capability to optimize the sound package treatment in the vehicle.
Technical Paper

Development of Quiet Sound Package Treatments for Class 8 Trucks

2001-04-30
2001-01-1541
This paper focuses on the development of treatments to control airborne noise through the dash panel. For a noise control material supplier, these treatments can be the most challenging to design because of the number of pass-throughs and design constraints. The dash panel development process includes extensive in-truck testing and analysis to identify sound paths (location and magnitude) and establish design criteria, laboratory material testing to aid in the selection of appropriate materials, laboratory component testing to select areas requiring treatment and to design the shape of the treatments, and in-truck testing to verify the performance of the new treatments.
X