Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Study of Crew Seat Impact Attenuation System for Indian Manned Space Mission

2024-06-01
2024-26-0469
The descent phase of GAGANYAAN (Indian Manned Space Mission) culminates with a crew module impacting at a predetermined site in Indian waters. During water impact, huge amount of loads are experienced by the astronauts. This demands an impact attenuation system which can attenuate the impact loads and reduce the acceleration experienced by astronauts to safe levels. Current state of the art impact attenuation systems use honeycomb core, which is passive, expendable, can only be used once (at touchdown impact) during the entire mission and does not account off-nominal impact loads. Active and reusable attenuation systems for crew module is still an unexplored territory. Three configurations of impact attenuators were selected for this study for the current GAGANYAAN crew module configuration, namely, hydraulic damper, hydro-pneumatic damper and airbag systems.
Technical Paper

Analysis of the Event Data Recorder (EDR) Function of a GM Active Safety Control Module (EOCM3 LC)

2024-04-09
2024-01-2888
The Advanced Driver Assistance System (ADAS) is a comprehensive feature set designed to aid a driver in avoiding or reducing the severity of collisions while operating the vehicle within specified conditions. In General Motors (GM) vehicles, the primary controller for the ADAS is the Active Safety Control Module (ASCM). In the 2013 model year, GM introduced an ASCM utilizing the GM internal nomenclature of External Object Calculation Module (EOCM) in some of their vehicles produced for the North American market. Similar to the Sensing and Diagnostic Module (SDM) utilized in the restraints system, the EOCM3 LC contains an Event Data Recorder (EDR) function to capture and record information surrounding certain ADAS or Supplemental Inflatable Restraint (SIR) events. The ASCM EDR contains information from external object sensors, various chassis and powertrain control modules, and internally calculated data.
Technical Paper

Research on Occupant Injury Prediction Method of Vehicle Emergency Call System Based on Machine Learning

2024-04-09
2024-01-2010
The on-board emergency call system with accurate occupant injury prediction can help rescuers deliver more targeted traffic accident rescue and save more lives. We use machine learning methods to establish, train, and validate a number of classification models that can predict occupant injuries (by determining whether the MAIS (Maximum Abbreviated Injury Scale) level is greater than 2) based on crash data, and ranked the correlation of some factors affecting vehicle occupant injury levels in accidents. The optimal model was selected by the model prediction accuracy, and the Grid Search method was used to optimize the hyper-parameters for the model.
Technical Paper

Art Meets Automotive: Design of a Curve-Adaptive Origami Gripper for Handling Textiles on Non-Planar Mold Surfaces

2024-04-09
2024-01-2575
The handling of flexible components creates a unique problem set for pick and place automation within automotive production processes. Fabrics and woven textiles are examples of flexible components used in car interiors, for air bags, as liners and in carbon-fiber layups. These textiles differ greatly in geometry, featuring complex shapes and internal slits with varying material properties such as drape characteristics, crimp resistance, friction, and fiber weave. Being inherently flexible and deformable makes these materials difficult to handle with traditional rigid grippers. Current solutions employ adhesive, needle-based, and suction strategies, yet these systems prove a higher risk of leaving residue on the material, damaging the weave, or requiring complex assemblies. Pincer-style grippers are suitable for rigid components and offer strong gripping forces, yet inadvertently may damage the fabric, and introduce wrinkles / folded-over edges during the release process.
Technical Paper

A Study on Optimizing Headlining Open-Structure for Face-to-Face Roof-Airbag Deployment

2024-04-09
2024-01-2394
In this study, an optimized structure for opening the headlining considering the deployment of the face-to-face roof airbag was studied. It was confirmed that the deployment performance differs depending on the skin of the headlining, and a standardized structure with mass production was proposed. Non-woven fabric and Tricot skin, which are economical and high-end specifications, satisfy the performance of PVC fusion application specifications after cutting 80% of the skin. The structure that satisfies the entire body including the knit specifications is a type that separates the roof airbag area piece, the corresponding soft piece is separated, and the deployment performance is satisfied with safety. Therefore, the structure is proposed as a standardized structure. This structure is expected to be applicable to roof DAB (Driver Airbag), PAB (Passenger Airbag), and Sunroof Airbag, which will be necessary technologies to secure indoor space.
Technical Paper

Analysis of Fluid Evidence on Various Vehicle Components

2024-04-09
2024-01-2467
Determining occupant kinematics in a vehicle crash is essential when understanding injury mechanisms and assessing restraint performance. Identifying contact marks is key to the process. This study was conducted to assess the ability to photodocument the various fluids on different vehicle interior component types and colors with and without the use of ultraviolet (UV) lights. Biological (blood, saliva, sweat and skin), consumable and chemical fluids were applied to vehicle interior components, such as seatbelt webbing, seat and airbag fabrics, roof liner and leather steering wheel. The samples were photodocumented with natural light and UV light (365 nm) exposure immediately after surface application and again 14 days later. The review of the photos indicated that fabric type and color were important factors. The fluids deposits were better visualized on non-porous than porous materials. For example, blood was better documented on curtain airbags than side or driver airbags.
Technical Paper

Side Impact Characteristics in Modern Light Vehicles

2024-04-09
2024-01-2646
Occupant protection in side impacts, in particular for near-side occupants, is a challenge due to the occupant’s close proximity to the impact. Near-side occupants have limited space to ride down the impact. Curtain and side airbags fill the gap between occupant and the side interior. This analysis was conducted to provide insight on the characteristics of side impacts and the relevancy of currently regulated test configurations. For this purpose, 2007-2015 NASS-CDS and 2017-2021 CISS side crash data were analyzed for towed light vehicles. 2008 and newer model year vehicle data was selected to ensure that most vehicles were equipped with side/curtain airbags. The results showed that side impacts accounted for approximately 26.7% of the vehicles involved and 18.9% of the vehicles with at least one seriously injured occupant. Most side impacts involved damage to the front and front-to-center of the vehicle.
Technical Paper

Effects of Anthropometry and Passive Restraint Deployment Timing on Occupant Metrics in Moderate-Severity Offset Frontal Collisions

2024-04-09
2024-01-2749
There are established federal requirements and industry standards for frontal crash testing of motor vehicles. Consistently applied methods support reliability, repeatability, and comparability of performance metrics between tests and platforms. However, real world collisions are rarely identical to standard test protocols. This study examined the effects of occupant anthropometry and passive restraint deployment timing on occupant kinematics and biomechanical loading in a moderate-severity (approximately 30 kph delta-V) offset frontal crash scenario. An offset, front-to-rear vehicle-to-vehicle crash test was performed, and the dynamics of the vehicle experiencing the frontal collision were replicated in a series of three sled tests. Crash test and sled test vehicle kinematics were comparable. A standard or reduced-weight 50th percentile male Hybrid III ATD (H3-50M) or a standard 5th percentile female Hybrid III ATD (H3-5F) was belted in the driver’s seating position.
Technical Paper

Performance of Five-Point Seat Belt on Occupant Safety in Vehicle on Frontal Crash Test

2024-02-23
2023-01-5169
In day-to-day life, accidents do occur frequently all around the globe. It is difficult to prevent these accidents as they occur due to different reasons, which cannot be easily controlled. However, the fatal injuries occurring to passengers can be reduced by installing efficient safety systems in vehicles, which will help in saving the lives of mankind. Many safety systems are being installed in vehicles such as seat belt restraints, airbags, etc. Generally, three-point seat belts are installed in passenger vehicles for safety purposes. This type of seat belt doesn't arrest the entire motion of the occupant's body during vehicle crashes, which can lead to fatal injuries and sometimes even death during vehicle crashes. To buckle passengers with seats, we can use five-point seat belts which will help in mitigating the injuries as compared to three-point seat belts.
Technical Paper

Headliner Composition Optimization without Compromising the Safety and Performance

2024-01-16
2024-26-0190
Reducing material wherever there is a possibility in automobile industry is inevitable for weight and cost saving. This paper explains about the possibilities of optimizing the material composition of automotive Headliners (also called as Roof liners) without affecting the performance and safety criteria. In this paper, we are targeting at optimizing the individual constituents of a composite Headliner. A conventional Headliner comprises of many sandwich layers of which PU foam shares the major percentage of the composition contributing to 80% of the Headliner thickness. In this paper, we are discussing about the optimization done in Headliner sandwich constituents without affecting the core performance parameters of headliner such as curtain airbag deployment, ergonomic regulations, drop test etc. By incorporating this change, without significant changes in other layers, overall weight reduction of ~24% and overall cost reduction of ~24% is achieved.
Technical Paper

Foam and FRP Sheets Packaging for Headliner Stiffness at Curtain Airbag Area

2024-01-16
2024-26-0008
As we all know, automotive headliners are an essential component of any car’s interior as they cover all the internal components and provide a clean and finished look. Headliners not only increase the aesthetic appeal of a car’s interior, but also acts as an insulation and sound absorption source. As per the latest Government norms, Curtain Airbag (henceforth called as CAB) has been made mandatory and this change calls for the corresponding changes in the Headliner packaging of all passenger vehicles. In general, curtain air-bag deployment calls for a twist open of Headliner at lateral sides (a portion below Hinge-line) during the deployment. This enables the inflated airbag to flow inside the passenger cabin to protect the passenger from any injury. Conventionally no components are packaged below the hinge-line area of headliner to avoid obstruction for CAB deployment and any part fly-off concerns.
Technical Paper

Novel Method for Vehicle Pulse Prediction

2024-01-16
2024-26-0002
Airbags are crucial elements of passive safety in vehicles that help minimizing occupant injuries during various crash scenarios such as frontal, side, and oblique impacts. Airbags in cars are now mandatory in many countries, and their performance depends on how well the system is designed. A well-tuned airbag deployment algorithm is necessary to score superior NCAP safety ratings. Tuning of airbag deployment algorithms requires several data points which are obtained through actual crash testing. This is a cumbersome and expensive process as it involves crash tests for each scenario (e.g., full front barrier, offset deformable barrier, angled impact, etc.) at multiple test speeds. These tests are destructive and render the vehicles only worthy of scrap.
Technical Paper

Safer Buses for Passengers and Pedestrians: Crashes and Injury Analyses from Indian and German In-Depth Data

2024-01-16
2024-26-0004
Bus transport is an important element in a sustainable transport strategy. The objective of this study is to understand crashes and injuries involving buses, suggest potential passive-safety interventions, estimate their effectiveness, and compare their effectiveness between Germany and India. Descriptive analysis of crash data from the German In-depth Accident Study (GIDAS) and the Road Accident Sampling System India (RASSI) database was performed in two parts: First, bus passengers and their injuries were analyzed and second, pedestrian injuries in bus-to-pedestrian crashes were analyzed. Lastly, interventions were suggested, and their effectiveness was estimated. Analysis of bus passengers showed that most moderate-to-critical injuries in the GIDAS data were to the head caused by interior bus components. In the RASSI data, head injuries were also frequent, often due to bus interior contact, but also due to ejection and impact to the ground or bus exterior.
Technical Paper

Importance of Pole Side Impact Test for Assessment of Curtain Airbags

2024-01-16
2024-26-0019
Government of India, in 2017, mandated a Side Impact Test (AIS 099 technically aligned to UN ECE Regulation No. 95.03 series of amendments) on M1 category Passenger Vehicles to ensure protection of occupants in lateral impact accident scenarios. Later, in 2022, a draft notification has been issued by the Government mandating installation of 6 airbags (2 Nos of thorax side airbags, 2 Nos of head protection or curtain airbags in addition to already mandated installation of Driver and Passenger Airbags) in all such passenger vehicles. However, the vehicles fitted with side thorax airbag and curtain airbags are proposed to be assessed as per AIS099 test only. Curtain Airbags are typically installed to protect occupant’s head from severe injuries in narrow object impacts simulated in Pole Side Impact Test Configurations. However, at present, India has not notified an equivalent standard to UN R135 demanding performance of the vehicle in pole side impact scenarios.
Technical Paper

RAMP Bracket Angle Optimization Coupled with Improved Head Room

2024-01-16
2024-26-0016
Restraint systems in automotives are inevitable for the safety of passengers. Curtain airbag is one such restraint system in automotives that reduces the risk of injury to passengers during crash, without which head injury is inevitable during side crash of a vehicle. So successful deployment of curtain airbag (henceforth called as CAB) is very important in automotive safety during crash. This paper dwells about the optimization done in ramp bracket angle with successful deployment of curtain airbag. This optimization has paved the way for increasing the head-roominess by ~15% and to respect the safety and styling intent in the vehicle successfully. Providing a ramp bracket at the lower bottom side of CAB guides the airbag successfully during deployment. Ramp bracket angle plays a vital role in guiding the airbag inside the passenger’s cabin without any obstruction.
Technical Paper

Seatback Failures and Human Tolerance in Severe Rear Impacts

2024-01-16
2024-26-0003
Seatback and head restraints are the primary restraining devices in rear-impact collisions. The seatback failures expose front seat occupants to dive deep into the rear compartment survival space. Furthermore, it allows the occupants to get in a position with lower spinal tolerance to the impact direction. This paper employs sled tests to demonstrate the dangers of seatback failures in severe rear impact by allowing the occupants to orient their spine in its lowest tolerance zone to the impact direction. Furthermore, the sled test shows the potential of head pocketing phenomena and torso augmentation producing compressive cervical spine loading enough to cause first-order neck buckling. Finally, the results of collapsing seatback dynamics are compared to the strong seatback performance by conducting a similar test with a strong ABTS seatback.
Technical Paper

Virtual Reality Based Study on Pre-Impact Position of Auto Rickshaw Driver

2023-11-10
2023-28-0118
The role of Virtual Reality (VR) platform for experimental studies to mitigate severe injuries is known. A Virtual Reality (VR) module was developed to provide an Indian auto-rickshaw driver experience using commercially available Oculus Quest 2 VR headset. A Driver Behaviour Questionnaire (DBQ) was developed and a study carried out among 20 auto-rickshaw drivers in Thanjavur, India. The DBQ questions provided data to shortlist the most likely near crash experiences among the surveyed drivers. A virtual reality environment was created using UNITY HUB software for one selected scenario from the DBQ survey analysis. A group of 10 volunteers to experience the event using VR gear in the biomechanical laboratory with reflective markers fixed on the body joints of the volunteers to obtain corresponding joint angles in the Neck, Lumbar, Shoulder, Hip, and Knee regions.
Technical Paper

Characterization and Modeling of Instrument Panel Textile Trim Materials for Passenger Airbag Deployment Analysis

2023-04-11
2023-01-0930
Premium instrument panels (IPs) contain passenger airbag (PAB) systems that are typically comprised of a stiff plastic substrate and a soft ‘skin’ material which are adhesively bonded. During airbag deployment, the skin tears along the scored edges of the door holding the PAB system, the door opens, and the airbag inflates to protect the occupant. To accurately simulate the PAB deployment dynamics during a crash event all components of the instrument panel and the PAB system, including the skin, must be included in the model. It has been recognized that the material characterization and modeling of the skin tearing behavior are critical for predicting the timing and inflation kinematics of the airbag. Even so, limited data exists in the literature for skin material properties at hot and cold temperatures and at the strain rates created during the airbag deployment.
Technical Paper

Development of a Neck Finite Element Model with Active Muscle Force for the THOR-50M Numerical Dummy

2023-04-11
2023-01-0002
With the development of active safety technology, effort has gradually shifted to preventing or minimizing car crashes. Automatic Emergency Braking Technology (AEB) can avoid accidents by warning and even automatic braking, but there is a contradiction between the accompanying occupant out-of-position and traditional passive safety design. In addition, the 2025 version of C-NCAP plans to add neck injury assessment requirements for AEB [1]. In order to study the kinematic response of the occupant's neck under AEB, a neck finite element model with active muscle force is established in this paper. Firstly, the open-source THOR-50M neck geometric model is used for finite element discretization. Secondly, the neck FE model of THOR-50M is verified through the qualification procedure of the NHTSA standard. Thirdly, according to the geometric features of human neck muscles in Zygote Body database, the neck muscle parameters are preliminarily determined.
Technical Paper

Modeling of Gas Charging and Discharging for Airbag Suspension System and Control of Height Adjustment

2023-04-11
2023-01-0660
Taking a closed airbag suspension system as studying objects, the nonlinear dynamic model of the reservoir, compressor, solenoid valve, pipeline and air spring is established. The compressor exhaust volume, solenoid valve flow rate and air spring charging and discharging rate are calculated and compared with experiment to validate the model. Taking pressure difference and height adjustment rate under different working conditions of an airbag suspension as control measures, a control strategy is developed based on the established nonlinear dynamic model. The result indicates that when the vehicle is in curb weight, design weight and GVW (gross vehicle weight), the working time of the compressor can be reduced by 13.6%, 15.1% and 46.5%, respectively, compared with the conventional mode, during a height adjustment cycle. Then a state observer is proposed to estimate the steady-height for reducing the disturbance of measured height from road excitation.
X