Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Front Loading Vehicle Dynamics Requirements during Basic Architecture Definition Using Virtual Simulation

2021-04-06
2021-01-0968
A critical requirement for product design and development is meeting vehicle dynamic performance. Customers changing needs puts tremendous pressure on automotive businesses to launch new vehicles within short durations of time. This makes it mandatory to have a wide-ranging virtual simulation and vigorous validation process to provide best in class ride and handling performance of vehicles. Physical testing of prototypes is the most time-consuming activity, so there is a need of front loading to substitute these requirements at the initial stage of the development cycle. This paper summarizes the overall process for front loading vehicle dynamics requirements during basic architecture definition using virtual simulation. Basic dimensions, CG, weight distribution and steer angle of the new vehicle are derived using concept calculations based on benchmark vehicles. Vehicle dynamics trials are then done for the benchmark vehicles.
Technical Paper

Develop the Methodology to Predict the Engine Mount Loads from Road Load Data Using MSC ADAMS and FEMFAT Virtual Iteration

2020-04-14
2020-01-1401
Design of powertrain mounting bracket is always a challenge in achieving good NVH characteristics and durability with less weight. For this activity engine mount load is necessary to optimize the weight to meet durability and NVH targets. This paper introduces a new method to calculate engine mount loads from chassis accelerations. The method starts by measuring chassis acceleration near engine mount location, then reproducing the same chassis acceleration in Multi Axis Shaker Table (MAST), and finally extracting the load in engine mount using testing (using load cell). The MAST test actuator displacement input is imported into ADAMS and engine mount loads are extracted. The extracted loads are correlated with physical test results. The correlation includes load time history and peak-to-peak load range. It is recommended to implement this method in early vehicle design phases. Implementing engine mount bracket weight optimization is desirable in early design stages.
Technical Paper

Improve Transient Response Correlation of SUV Using MSC.ADAMS & MSC.EASY5 Functional Mock-Up Interface for Hydraulic Power Steering System

2020-04-14
2020-01-0651
This paper presents a comprehensive model of a hydraulic power steering system for predicting the transient responses under various steering inputs. The hydraulic system model, which integrates together all fluid line elements and hydraulic components, is formulated using the MSC Easy5 software. A full vehicle model is developed in ADAMS/Car. Functional Mock up Interface (FMI), a tool independent standard is used for co-simulation of ADAMS and Easy5 Dynamic models. This paper describes a co-simulation methodology developed using FMI interface for full vehicle Simulations using hydraulic power steering. A virtual simulation scheme is developed to obtain the system transient responses and the results are compared with those measured from the tests. In general, the simulation results agree with those obtained from the tests under the same steering inputs and operating conditions.
Technical Paper

Systematic Work Flow for Fatigue Life Prediction of Automotive Components

2019-10-11
2019-28-0021
Fatigue life estimation of automotive components is a critical requirement for product design and development. Automotive companies are under tremendous pressure to launch new vehicles within short duration because of customer’s changing preferences. There is a necessity to have a comprehensive virtual simulation and robust validation process to evaluate durability of vehicle as per customer usage. Test track and field test are two of the most time-consuming activities, so there is a need of simulation process to substitute these requirements. This paper summarizes the overall process of Accelerated Durability Test with measured road loads. Based on category of vehicle, type road profiles and the customer usage pattern, the wheel forces, strains and acceleration are measured which is used to derive the equivalent duty cycles on proving ground. The wheel force transducers (WFT) are used to derive loads for fatigue life estimation.
Technical Paper

Commercial Vehicle Two Cylinder Powertrain Mount Selection Based on Robust Optimization Using MSC/ADAMS and Mode Frontier

2018-04-03
2018-01-1286
Ride comfort, drivability and driving stability are important factors defining vehicle performance and customer satisfaction. The IC powertrain is the source for the vibration that adversely affects the vehicle performance. The IC powertrain is composed of reciprocating and rotating components which result in unbalanced forces, moments during operation and produce vibrations at the vehicle supporting members. The vibration reduction is possible by minimizing unbalanced forces and/or by providing anti-vibration mounts at the powertrain-vehicle interface. The power train is suspended on the vehicle frame via several flexible mounts, whose function is to isolate powertrain vibrations from the frame. Total six different modes of powertrain vibration namely - roll, yaw, pitch, vertical, lateral and longitudinal need to be isolated. Powertrain mount stiffness and location is critical in this regard.
Technical Paper

Prediction of Hub Load on Power Steering Pump Using Dynamic Simulation and Experimental Measurement

2017-03-28
2017-01-0416
New trend in steering system such as EPS is coming up, but still hydraulic power steering system is more prevalent in today’s vehicles. Power steering pump is a vital component of hydraulic power steering system. Failure of steering pump can lead to loss of power assistance. Prediction of hub load on pump shaft is an important design input for pump manufacturer. Higher hub loads than the actual designed load of pump bearing may lead to seizure of pump. Pump manufacturer has safe limits for hub load. Simulations can assist for optimization of belt layout and placement of accessories to reduce the hub load. Lower hub load can have direct effect on improvement of pump durability. This paper deals with dynamic simulation of belt drive system in MSC.ADAMS as well as vehicle level measurement of hub load on power steering pump.
Technical Paper

Verification of Non-ABS Vehicle Performance with Real Time Suspension Deflection

2016-09-18
2016-01-1934
Fierce competition in India’s automotive industry has led to constant production innovation among manufactures. This has resulted in the reduction of the life cycle of the design philosophies and design tools. One of the performance factors that have continues to challenge automotive designer is to design and fine tune the braking performance with low cost and short life cycle. Braking performance of automotive vehicle is facilitated by the adhesion between the tyre and the ground. Braking force generated at the wheels of a vehicle have to appropriately match to the adhesion. Antilock braking system (ABS) is used for this purpose. ABS is a modern braking system which could significantly improve directional stability and reduce stopping distance of a vehicle. However this system still too complicated and expensive to use in low end compact car and pickup truck.
Technical Paper

Durability Analysis of Motorcycle Front Fender through Virtual Simulation, on Road Testing and Laboratory Testing Using NVH Tool

2015-06-15
2015-01-2264
In India, demand for motorcycle with good comfort is increasing among the customers thereby the vibration reduction of two wheelers is key parameter for motorcycle manufacturers. In order to overcome the demand in the market, manufacturers are giving more importance to cost of the product by reducing the material. This results in the reduction of the life cycle of the vehicle models and drives the manufacturers to different product design philosophies and design tools, as one would expect. One of the performance factors that continue to challenge designers is that of vehicle vertical acceleration experienced by the motorcycle components. An essential tool in the motorcycle development process is the ability to quantify the durability of the component. This paper main objective is to increase the life of the motorcycle front fender through virtual simulation, on road testing and laboratory testing using NVH tool.
Technical Paper

Evaluation of Two Wheeled Vehicle Frame through Virtual Simulation and Testing

2015-04-14
2015-01-1310
The main challenge that arises in the design of a motorcycle frame is its effect on the functionality on the vehicle, its effect on ride comfort and its durability. While functionality and ride comfort due to frame can be evaluated by subjectively testing it before the product reaches customer, evaluation of its durability is a complex process. This work is an investigation of the frame body of a 100 cc vehicle in India. These vehicles are subjected to endurance tests on a rough road at vehicle level to quantitatively evaluate their frame durability. However, such tests require significant time and cost, so an attempt has been made to develop a virtual rough road simulator to extract forces involved in it and testing the frame at component level with those loads on a test rig. Also durability results were compared and analyzed with the track data and frame test rig.
X