Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Thermodynamic Benefits of Opposed-Piston Two-Stroke Engines

2011-09-13
2011-01-2216
A detailed thermodynamic analysis was performed to demonstrate the fundamental efficiency advantage of an opposed-piston two-stroke engine over a standard four-stroke engine. Three engine configurations were considered: a baseline six-cylinder four-stroke engine, a hypothetical three-cylinder opposed-piston four-stroke engine, and a three-cylinder opposed-piston two-stroke engine. The bore and stroke per piston were held constant for all engine configurations to minimize any potential differences in friction. The closed-cycle performance of the engine configurations were compared using a custom analysis tool that allowed the sources of thermal efficiency differences to be identified and quantified.
Technical Paper

Heat Transfer Predictions and Experiments in a Motored Engine

1988-09-01
881314
In the first part of this study, a one-dimensional code was used to compare predictions from six different two-equation turbulence models. It is shown that the application of the traditional k-ε models to the viscous-dominated region of the boundary layer can produce errors in both the calculated heat flux and surface friction. A low-Reynolds-number model does not appear to predict similar non-physical effects. A new one-dimensional model, which includes the effect of compression, has been formulated by multiparameter fit to the numerical solution of the energy equation. This model can be used in place of the law-of-the-wall to calculate the surface heat flux. The experiments were performed in a specially-instrumented engine, allowing optical access to the clearance volume. Measurements of heat flux, swirl velocities, and momentum boundary layer thickness were made for different engine speeds.
X