Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Brake Pad Moisture Adsorption and Its Effect on Brake Pad Compression Strain/Modulus and Friction Coefficient: Effect of Pad Cure Temperatures

2023-11-05
2023-01-1863
The moisture adsorption kinetics of copper-free brake pads was studied to confirm an earlier finding that the adsorption weight gain follows a logarithmic relationship with respect to the square root of humidity exposure time and the relationship is linear in the beginning. When the pad cure temperature was raised from 120 to 180 and 240 °C, the adsorption rate increased. The 180 °C cure produced the highest pad modulus. With increasing moisture adsorption, the pad compression modulus increased just like the pad dynamic modulus, meaning decreasing compression/compressibility while the ISO ‘compressibility’ determined after 3 compressions under 160 bars increased in contradiction. It is concluded that the ISO ‘compressibility’ is a destructive hardness measurement like the Gogan or Rockwell hardness: the key difference is the indenter covers the entire surface of the pad. The true compressibility must be determined as an inverse function of bulk modulus.
Technical Paper

Kinetics of Moisture Adsorption and Its Impact on Brake Pad Compression Modulus and Compressibility: Static Modulus of Compression vs. Dynamic Modulus of Compression vs. Hardness vs. Friction Coefficient

2022-09-19
2022-01-1165
The kinetics of moisture adsorption is studied for copper-free brake pads. The pad weight gain is found to increase linearly with the square root of exposure time to humidity at a given temperature in the initial stage of adsorption - the higher the humidity, the higher the weight gain. Pads cured at 150°C adsorb less moisture than pads cured at 220°C. As the moisture content in the pad increases, the tangent modulus increases while the secant modulus decreases, resulting in decreasing compressibility associated with the tangent modulus of compression and increasing compressibility associated with the secant modulus of compression - compressibility defined as a reciprocal of compression modulus. Static modulus of compression, dynamic modulus of compression and hardness measurements are compared, and they all show the same trend. A rate constant of adsorption is proposed to define and compare moisture sensitivity of friction material
Journal Article

A Study of Moisture Sorption-Desorption and Its Influence on the Dynamic Modulus and Friction Coefficient of Copper-Free Brake Pads

2022-09-19
2022-01-1173
The moisture sorption-desorption kinetics of copper-free brake pads was studied in detail. The sorption-desorption behavior is dependent on the environmental temperature and humidity. At 24 °C under 54% RH, the sorption increases rapidly for a week or so identified as the first stage of sorption, enters the second stage of negligible weight gain for a month and then the third stage of rapid sorption again. With increasing moisture sorption, the pad thickness increases through the 3 stages and the dynamic modulus also increases through the 3 stages. Friction materials lose moisture rapidly at 130°C and behave like desiccants. The sorption-desorption phenomenon significantly influences the friction coefficient -- a higher moisture content leading to lower friction coefficients. It is demonstrated that the rising friction coefficient for the half a dozen braking stops at the beginning of every brake testing in general is due to moisture desorption caused by rising pad temperatures.
Technical Paper

An Investigation of Property Changes of Copper-Free Brake Pads During Wear Testing: Pressure and Temperature Dependence of Pad Modulus, and the Correlation Between Modulus and Friction Coefficient

2021-10-11
2021-01-1276
Earlier publications have demonstrated that pad and disc properties change during storage and also during the SAE J2522 Brake Effectiveness Test Procedure. The current investigation was undertaken to find out how the properties change under milder braking conditions, using the SAE J2707 Wear Test Procedure. A copper-free formulation was selected for the investigation and tested on an inertia dynamometer using a front caliper designed for a passenger car. The pad dynamic modulus changed up or down throughout the test, depending on the test conditions. The pad dynamic modulus, the pad natural frequencies and the disc natural frequencies all decreased by the end of the test. Under high-speed, high-deceleration and high-temperature braking conditions, the pad surface region permanently expands, which results in reduced dynamic modulus and also leads to reduced pad thickness loss as compared with pad weight loss.
Technical Paper

A Contribution to the Understanding of Friction and Squeal of Automotive Brakes: Wear Particle Generation and Deformation of Sliding Surface Region Influencing the Friction Coefficients of Copper-Free Disc Pads

2021-10-11
2021-01-1288
Copper-free disc pads of 9 different compositions were made using a traditional hot molding process and tested to study frictional behavior. It is found that the friction coefficient consists primarily of two parts; one part controlled by the plastic deformation of the friction surface region of the disc and pad, and the second part controlled by the total wear of the disc and pads. As the plastic deformation and the wear are non-linear with respect to the load and sliding speed, the friction coefficient becomes a non-linear function of the load and speed. Under moderate braking conditions, the plastic deformation part is more significant in determining the friction coefficient while under more severe braking conditions, the wear contribution becomes more significant. The frictional behavior of a fade cycle is explained, and the correlation between brake squeal and disc wear is confirmed.
Technical Paper

Disc Brake Squeal vs. Disc Pad Compressibility-Caliper Stiffness Interactions: Low-Frequency Squeal and High-Frequency Squeal vs. Differential Pad Wear

2017-09-17
2017-01-2528
It is widely believed or speculated that higher pad compressibility leads to reduced brake squeal and that caliper design can affect brake squeal. After encountering anecdotal contradictory cases, this investigation was undertaken to systematically generate basic data and clarify the beliefs or speculations. In order to adjust pad compressibility, it is common to modify pad molding temperatures, pressures and times, which in addition to changing the compressibility, changes friction coefficient and physical properties of the pad at the same time. In order to separate these two effects, NAO disc pads were prepared under the same molding conditions while using different thicknesses of the underlayer to achieve different compressibilities, thus changing the compressibility only without changing the friction coefficient and physical properties of the pad.
Technical Paper

In-Plane and Out-of-Plane Vibrations of Brake Linings on the Rotor

2017-09-17
2017-01-2530
The dynamics and, in particular, the NVH phenomena in brakes are still in the focus of research. Recent investigations of for example Rhee et al. show two principal vibrational forms of the linings on the rotor [1]. The first form is characterized by vibrations where both linings are in-phase (minimal differential torque between the inner pad and the outer pad). This produces in-plane vibrations of the rotor and results in high-frequency squealing events in the brake. The second form is an antiphase vibration of the brake linings with respect to each other (increased differential torque between the inner pad and the outer pad). This produce directly out-of-plane vibrational modes of the disc, which results in lower-frequency caliper and rotor oscillations. One hypothesis is that different wear densities of the linings essentially characterize the two vibrational modes. The wear behavior is not taken into consideration of this paper as it will be discussed in further publications.
Technical Paper

Influence of Formulation and Process Modifications on Brake Friction, Wear and Squeal: Low-Copper NAOs and Importance of Disc Wear

2014-09-28
2014-01-2482
The influence of processing conditions on Low-Copper NAO disc pads were investigated as part of an effort to develop Low-Copper disc pad formulations as this kind of information is not readily available in open literature. Processing conditions as well as formulation modifications are found to influence friction, pad wear, disc wear and brake squeal. Low-Copper disc pads for pick-up trucks, equivalent to an OE pad, are developed. It is also found that brake squeal measured during the SAE J2522 (AK Master) Performance testing is related to the combined total wear rate of the disc plus the inner/outer pads or the disc wear rate alone, and that there is a threshold wear rate, above which brake squeal increases rapidly.
Technical Paper

A Comprehensive Study of Humidity Effects on Friction, Pad Wear, Disc Wear, DTV, Brake Noise and Physical Properties of Pads

2011-09-18
2011-01-2371
Passenger car NAO(Non-Asbestos Organic) disc pads were subjected to low and high humidity conditions. Humidity is found to measurably affect pad dimensions, pad hardness, compressibility, friction, pad wear, disc wear, disc roughness, DTV(Disc Thickness Variation) and brake noise. Also the friction film is found to absorb a significant amount of moisture. It is essential to have a tight control of temperature and humidity for brake testing and quality control if meaningful data are to be generated with minimum variability. Seasonal changes must be considered for brake testing on the road.
X