Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Enabling the security of global time in software-defined vehicles (SGTS, MACsec)

2024-07-02
2024-01-2978
The global time that is propagated and synchronized in the vehicle E/E architecture is used in safety-critical, security-critical, and time-critical applications (e.g., driver assistance functions, intrusion detection system, vehicle diagnostics, external device authentication during vehicle diagnostics, vehicle-to-grid and so on). The cybersecurity attacks targeting the global time result in false time, accuracy degradation, and denial of service as stated in IETF RFC 7384. These failures reduce the vehicle availability, robustness, and safety of the road user. IEEE 1588 lists four mechanisms (integrated security mechanism, external security mechanism, architectural solution, and monitoring & management) to secure the global time. AUTOSAR defines the architecture and detailed specifications for the integrated security mechanism "Secured Global Time Synchronization (SGTS)" to secure the global time on automotive networks (CAN, FlexRay, Ethernet).
Technical Paper

Thermal Management System for Battery Electric Heavy-Duty Trucks

2024-07-02
2024-01-2971
On the path to decarbonizing road transport, electric commercial vehicles will play a significant role. The first applications were directed to the smaller trucks for distribution traffic with relatively moderate driving and range requirements, but meanwhile, the first generation of a complete portfolio of truck sizes is developed and available on the market. In these early applications, many compromises were accepted to overcome component availability, but meanwhile, the supply chain can address the specific needs of electric trucks. With that, the optimization towards higher usability and lower costs can be moved to the next level. Especially for long-haul trucks, efficiency is a driving factor for the total costs of ownership. Besides the propulsion system, all other systems must be optimized for higher efficiency. This includes thermal management since the thermal management components consume energy and have a direct impact on the driving range.
Technical Paper

Additively Manufactured Wheel Suspension System with Integrated Conductions and Optimized Structure

2024-07-02
2024-01-2973
Increasing urbanisation and the growing environmental awareness in society require new and innovative vehicle concepts. In the present work, the design freedoms of additive manufacturing (AM) are used to develop a front axle wheel suspension for a novel modular vehicle concept. The development of the suspension components is based on a new method using industry standard load cases for the strength design of the components. To design the chassis components, first the available installation space is determined and a suitable configuration of the chassis components is defined. Furthermore, numerical methods are used to identify component geometries that are suitable for the force flow. The optimisation setup is selected in a way that allows to integrate information, energy and material-carrying conductors into the suspension arms. The conductors even serve as load-bearing structures because of the matching design of the components.
Technical Paper

Harmonic injection method for NVH optimization of permanent magnet synchronous motors considering the structural characteristics of the machine

2024-07-02
2024-01-3015
Noise, vibration and harshness (NVH) is one of the most important performance evaluation aspect of electric motors. Among the different causes of the NVH issues of electrical drives, the high-frequency spatial and temporal harmonics of the electrical drive system is of great importance. To reduce the tonal noise of the electric motors, harmonic injection methods can be applied. However, a lot of the existing related work focuses more on improving the optimization process of the parameter settings of the injected current/flux/voltage, which are usually limited to some specific working conditions. The applicability and effectivity of the algorithm to the whole frequency/speed range are not investigated. In this paper, a multi-domain pipeline of harmonic injection controller design for a permanent magnet synchronous motor (PMSM) is proposed.
Technical Paper

Impact of AdBlue Composition and Water Purity on Particle Number Increase

2024-07-02
2024-01-3012
Previous studies have shown that dosing AdBlue into the exhaust system of diesel engines to reduce nitrogen oxides can lead to an increase in the number of particles (PN). In addition to the influencing factors of exhaust gas temperature, exhaust gas mass flow and dosing quantity, the dosed medium itself (AdBlue) is not considered as a possible influence due to its regulation in ISO standard 22241. However, as the standard specifies limit value ranges for the individual regulated properties and components for newly sold AdBlue, in reality there is still some margin in the composition. This paper investigates the particle number increase due to AdBlue dosing using several CPCs. The increase in PN is determined by measuring the number of particles after DPF and thus directly before dosing as well as tailpipe. Several AdBlue products from different sources and countries are measured and their composition is also analyzed with regard to the limit values regulated in the standard.
Technical Paper

Measurements in the Recirculation Path of a Fuel Cell System

2024-07-02
2024-01-3009
When using "green" hydrogen, fuel cell technology plays a key role in emission-free mobility. A powertrain based on fuel cells (FC) shows its advantages over battery-electric powertrains when the requirement profile primarily demands high performance over a longer period of time, high flexible availability and short refueling times. In addition, FC achieves higher effi-ciencies than the combustion of hydrogen in a gas engine, meaning that the chemical energy is used more efficiently than with established combustion engines. When using FC technology, numerous companies in Baden-Württemberg can contribute their specific expertise from the traditional automotive construction and supplier business. This includes auxiliary units in the air (cathode) and hydrogen (anode) path, such as the air compressor, the H2 recycling pump, humidifier, cooling system, power electronics, valve and pressure tank technology as well as components of the fuel cell stack itself.
Technical Paper

Probabilistically Extended Ontologies a basis for systematic testing of ML-based systems

2024-07-02
2024-01-3002
Autonomous driving is a hot topic in the automotive domain, and there is an increasing need to prove its reliability. They use machine learning techniques, which are themselves stochastic techniques based on some kind of statistical inference. The occurrence of incorrect decisions is part of this approach and often not directly related to correctable errors. The quality of the systems is indicated by statistical key figures such as accuracy and precision. Numerous driving tests and simulations in simulators are extensively used to provide evidence. However, the basis of all descriptive statistics is a random selection from a probability space. The difficulty in testing or constructing the training and test data set is that this probability space is usually not well defined. To systematically address this shortcoming, ontologies have been and are being developed to capture the various concepts and properties of the operational design domain.
Technical Paper

Fuel Cell Fault Simulation and Detection for On Board Diagnostics using Real-Time Digital Twins

2024-06-12
2024-37-0014
The modern automotive industry is facing challenges of ever-increasing complexity in the electrified powertrain era. On-board diagnostic (OBD) systems must be thoroughly validated and calibrated through many iterations to function effectively and meet the regulation standards. Their development and design process are more complex when prototype hardware is not available and therefore virtual testing is a prominent solution, including Software-in-the-loop (SiL) and Hardware-in-the-loop (HIL) simulations. Virtual prototype testing relying on real-time simulation models is necessary to design and test new era’s OBD systems quickly and in scale. The new fuel cell powertrain involves new and preciously unexplored fail modes. To make the system robust, simulations are required to be carried out to identify different fails.
Technical Paper

Comparison Of the Effects of Renewable Fuels on The Emissions of a Small Diesel Engine for Urban Mobility

2024-06-12
2024-37-0019
The current work presents the results of an investigation on the impact of renewable fuels on the combustion and emissions of a turbocharged compression-ignition internal combustion engine. An experimental study was undertaken and the engine settings were not modified to account for the fuel's chemical and physical properties, to analyze the performance of the fuel as a potential drop-in alternative fuel. Three fuels were tested: mineral diesel, a blend of it with waste cooking oil biodiesel and a hydrogenated diesel. The analysis of the emissions at engine exhaust highlights that hydrogenated fuel allows to reduce CO, total hydrocarbon emissions, particulate matter and NOx.
Technical Paper

Numerical Study of Application of Gas Foil Bearings in High-Speed Drivelines

2024-06-12
2024-01-2941
Gas bearings are an effective solution to high-speed rotor applications for its contamination free, reduced maintenance and higher reliability. However, low viscosity of gas leads to lower dynamic stiffness and damping characteristics resulting in low load carrying capacity and instability at higher speeds. Gas bearings can be enhanced by adding a foil structure commonly known as gas foil bearings (GFBs), whose dynamic stiffness can be tailored by modifying the geometry and the material properties resulting in better stability and higher load carrying capacity. A detailed study is required to assess the performance of high-speed rotor systems supported on GFBs, therefore in this study a bump type GFB is analyzed for its static and dynamic characteristics. The static characteristics are obtained by solving the non-linear Reynolds equation through an iterative procedure.
Technical Paper

Choosing the Best Lithium Battery Technology in the Hybridization of Ultralight Aircraft

2024-06-12
2024-37-0017
Many research centers and companies in general aviation have been devoting efforts to the electrification of propulsive plants to reduce environmental impact and/or increase safety. Even if the final goal is the elimination of fossil fuels, the limitations of today's battery in terms of energy and power densities suggest the adoption of hybrid-electric solutions that combine the advantages of conventional and electric propulsive systems, namely reduced fuel consumption, high peak power, and increased safety deriving from redundancy. Today, lithium batteries are the best commercial option for the electrification of all means of transportation. However, lithium batteries are a family of technologies that presents a variety of specifications in terms of gravimetric and volumetric energy density, discharge and charge currents, safety, and cost.
Technical Paper

Reduced order model for modal analysis of electric motors considering material and dimensional variations

2024-06-12
2024-01-2945
With the electrification of the automotive industry, electric motors have emerged as pivotal components. A profound understanding of their vibrational behaviour stands as a cornerstone for guaranteeing not only the optimal performance and reliability of vehicles in terms of noise, vibration, and harshness (NVH), but also the overall driving experience. The use of conventional finite element analysis (FEA) techniques for identification of the natural frequencies characteristics of electric motors often imposes significant computational loads, particularly when accurate material and geometrical properties and wider frequency ranges are considered. On the other hand, traditional reduced order vibroacoustic methodologies utilising simplified 2D representations, introduce several assumptions regarding boundary conditions and properties, leading to sacrifices in the accuracy of the results.
Technical Paper

Efficient engine encapsulation strategy using poroelastic finite element simulation

2024-06-12
2024-01-2957
With the increasing importance of electrified powertrains, electric motors and gear boxes become an important NVH source especially regarding whining noises in the high frequency range. Engine encapsulation noise treatments become often necessary and present some implementation, modeling as well as optimization issues due to complex environments with contact uncertainties, pass-throughs and critical uncovered areas. Relying purely on mass spring systems is often a too massive and relatively unefficient solution whenever the uncovered areas are dominant. Coverage is key and often a combination of hybrid backfoamed porous stiff shells with integral foams for highly complex shapes offer an optimized trade-off between acoustic performance, weight and costs.
Technical Paper

Transient Numerical Analysis of a Dissipative Expansion Chamber Muffler

2024-06-12
2024-01-2935
Expansion chamber mufflers are commonly applied to reduce noise in HVAC. Dissipative materials, such as microperforated plates (MPPs), are often applied to achieve a more broadband mitigation effect. Such mufflers are typically characterized in the frequency domain, assuming time-harmonic excitation. From a computational point of view, transient analyses are more challenging. A transformation of the equivalent fluid model or impedance boundary conditions into the time domain induces convolution integrals. We apply the recently proposed finite element formulation of a time domain equivalent fluid (TDEF) model to simulate the transient response of dissipative acoustic media to arbitrary unsteady excitation. As most time domain approaches, the formulation relies on approximating the frequency-dependent equivalent fluid parameters by a sum of rational functions composed of real-valued or complex-conjugated poles.
Technical Paper

The irrotational intensity: an efficient tool to understand the vibration energy propagation in complex structures using an FE Model.

2024-06-12
2024-01-2942
Although structural intensity was introduced in the 80's, this concept never found practical applications, neither for numerical nor experimental approaches. Quickly, it has been pointed out that only the irrotational component of the intensity offers an easy interpretation of the dynamic behavior of structures by visualizing the vibration energy flow. This is especially valuable at mid and high frequency where the structure response understanding can be challenging. A new methodolodgy is proposed in order to extract this irrotational intensity field from the Finite Element Model of assembled structures such as Bodies In White. This methodology is hybrid in the sense that it employs two distinct solvers: a dynamic solver to compute the structural dynamic response and a thermal solver to address a diffusion equation analogous to the thermal conduction built from the previous dynamic response.
Technical Paper

A critical review of some Panel Contribution Analysis methods used in interior vehicle acoustics

2024-06-12
2024-01-2932
In the acoustic study of the interior noise of a vehicle, whether for structure-borne or air-borne excitations, knowing which areas contribute the most to interior noise and therefore should be treated as a priority, is the main goal of the engineer in charge of the NVH. Very often these areas are numerous, located in different regions of the vehicle and contribute at different frequencies to the overall sound pressure level. This has led to the development of several “Panel Contribution Analysis” (PCA) experimental techniques. For example, a well-known technique is the masking technique, which consists of applying a “maximum package” (i.e., a package with very high sound insulation) to the panels outside of the area whose contribution has to be measured. This technique is pragmatic but rather cumbersome to implement. In addition, it significantly modifies the dynamics and internal acoustics of the vehicle.
Technical Paper

Experimental Study of the Acoustics of a Electric Refrigerant Scroll Compressor

2024-06-12
2024-01-2924
In electrified vehicles, auxiliary units can be a dominant source of noise, one of which is the refrigerant scroll compressor. Compared to vehicles with combustion engines, e-vehicles require larger refrigerant compressors, as in addition to the interior, the battery and the electric motors must be cooled. The compressor causes the acoustic excitation of other refrigeration circuit components and the chassis via pressure pulsations and vibration transmission, as well as emitting airborne sound directly. Sound measurements have been performed in an anechoic chamber to investigate the influence of operating conditions on the acoustics of an electric scroll compressor. This paper investigates the influence of the operating conditions on compressor acoustics and shows that rotation speed is the main factor influencing compressor noise. The sound spectra of fluid, structure and airborne noise are dominated by speed-dependent, tonal components.
Technical Paper

Structural Dynamic Modelling of HVAC Systems

2024-06-12
2024-01-2923
The structure-, fluid- and air-borne excitation generated by HVAC compressors can lead to annoying noise and low frequency vibrations in the passenger compartment. These noises and vibrations are of great interest in order to maintain high passenger comfort of EV vehicles. The main objective of this paper is to develop a numerical model of the HVAC system and to simulate the structure-borne sound transmission from the compressor through the HVAC hoses to the vehicle in a frequency range up to 1 kHz. An existing automotive HVAC system was fully replicated in the laboratory. Vibration levels were measured on the compressor and on the car body side of the hoses under different operational conditions. Additional measurements were carried out using external excitation of the compressor in order to distinguish between structure- and fluid-borne transmission. The hoses were experimentally characterised with regard to their structure-borne sound transmission characteristics.
Technical Paper

Electric Vehicle Ride & Vibrations Analysis - Full electric vehicle MBD model development for NVH studies

2024-06-12
2024-01-2918
The NVH performance of electric vehicles is a key indicator of vehicle quality, being the structure-borne transmission predominating at low frequencies. Many issues are typically generated by high vibrations, transmitted through different paths, and then radiated acoustically into the cabin. A combined analysis, with both finite-element and multi-body models, enables to predict the interior vehicle noise and vibration earlier in the development phases, to reduce the development time and moreover to optimize components with an increased efficiency level. In the present work, a simulation of a Hyundai electric vehicle has been performed in IDIADA VPG with a full vehicle multibody (MBD) model, followed by vibration/acoustic simulations with a Finite elements model (FEM) in MSC. Nastran to analyze the comfort. Firstly, a full vehicle MBD model has been developed in MSC. ADAMS/Car including representative flexible bodies (generated from FEM part models).
Technical Paper

Definition and Application of a Target Cascading Process on a Fully Trimmed Body, from Vehicle Objectives to Component Objectives

2024-06-12
2024-01-2916
Finite element (FE) based simulations for fully trimmed bodies are a key tool in the automotive industry to predict and understand the Noise, Vibration and Harshness (NVH) behavior of a complete car. While structural and acoustic transfer functions are nowadays straight-forward to obtain from such models, the comprehensive understanding of the intrinsic behavior of the complete car is more complex to achieve, in particular when it comes to the contribution of each sub-part to the global response. This paper proposes a complete target cascading process, which first assesses which sub-part of the car is the most contributing to the interior noise, then decomposes the total structure-borne acoustic transfer function into several intermediate transfer functions, allowing to better understand the effect of local design changes.
X