Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Simulation of Hydrogen Combustion in Spark Ignition Engines Using a Modified Wiebe Model

2024-07-02
2024-01-3016
Due to its physical and chemical properties, hydrogen is an attractive fuel for internal combustion engines, providing grounds for studies on hydrogen engines. It is common practice to use a mathematical model for basic engine design and an essential part of this is the simulation of the combustion cycle, which is the subject of the work presented here. One of the most widely used models for describing combustion in gasoline and diesel engines is the Wiebe model. However, for cases of hydrogen combustion in DI engines, which are characterized by mixture stratification and in some cases significant incomplete combustion, practically no data can be found in the literature on the application of the Wiebe model. Based on Wiebe's formulas, a mathematical model of hydrogen combustion has been developed. The model allows making computations for both DI and PFI hydrogen engines. The parameters of the Wiebe model were assessed for three different engines in a total of 26 operating modes.
Technical Paper

Current and Torque Harmonics Analysis of Triple Three-Phase Permanent-Magnet Synchronous Machines with Arbitrary Phase Shift Based on Model-in-the-Loop

2024-07-02
2024-01-3025
Multiple three-phase machines have become popular in recent due to their reliability, especially in the ship and airplane propulsions. These systems benefit greatly from the robustness and efficiency provided by such machines. However, a notable challenge presented by these machines is the growth of harmonics with an increase in the number of phases, affecting control precision and inducing torque oscillations. The phase shift angles between winding sets are one of the most important causes of harmonics in the stator currents and machine torque. Traditional approaches in the study of triple-three-phase or nine-phase machines mostly focus on specific phase shift, lacking a comprehensive analysis across a range of phase shifts. This paper discusses the current and torque harmonics of triple-three-phase permanent magnet synchronous machines (PMSM) with different phase shifts. It aims to analyze and compare the impacts of different phase shifts on harmonic levels.
Technical Paper

Graph based cooperation strategies for automated vehicles in mixed traffic

2024-07-02
2024-01-2982
In the context of urban smart mobility, vehicles have to communicate with each other, surrounding infrastructure, and other traffic participants. By using Vehicle2X communication, it is possible to exchange the vehicles’ position, driving dynamics data, or driving intention. This concept yields the use for cooperative driving in urban environments. Based on current V2X-communication standards, a methodology for cooperative driving of automated vehicles in mixed traffic scenarios is presented. Initially, all communication participants communicate their dynamic data and planned trajectory, based on which a prioritization is calculated. Therefore, a decentralized cooperation algorithm is introduced. The approach is that every traffic scenario is translatable to a directed graph, based in which a solution for the cooperation problem is computed via an optimization algorithm.
Technical Paper

FMCW Lidar Simulation with Ray Tracing and Standardized Interfaces

2024-07-02
2024-01-2977
In pursuit of safety validation of automated driving functions, efforts are being made to accompany real world test drives by test drives in virtual environments. To be able to transfer highly automated driving functions into a simulation, models of the vehicle’s perception sensors such as lidar, radar and camera are required. In addition to the classic pulsed time-of-flight (ToF) lidars, the growing availability of commercial frequency modulated continuous wave (FMCW) lidars sparks interest in the field of environment perception. This is due to advanced capabilities such as directly measuring the target’s relative radial velocity based on the Doppler effect. In this work, an FMCW lidar sensor simulation model is introduced, which is divided into the components of signal propagation and signal processing. The signal propagation is modeled by a ray tracing approach simulating the interaction of light waves with the environment.
Technical Paper

Harmonic injection method for NVH optimization of permanent magnet synchronous motors considering the structural characteristics of the machine

2024-07-02
2024-01-3015
Noise, vibration and harshness (NVH) is one of the most important performance evaluation aspect of electric motors. Among the different causes of the NVH issues of electrical drives, the high-frequency spatial and temporal harmonics of the electrical drive system is of great importance. To reduce the tonal noise of the electric motors, harmonic injection methods can be applied. However, a lot of the existing related work focuses more on improving the optimization process of the parameter settings of the injected current/flux/voltage, which are usually limited to some specific working conditions. The applicability and effectivity of the algorithm to the whole frequency/speed range are not investigated. In this paper, a multi-domain pipeline of harmonic injection controller design for a permanent magnet synchronous motor (PMSM) is proposed.
Technical Paper

Impact of AdBlue Composition and Water Purity on Particle Number Increase

2024-07-02
2024-01-3012
Previous studies have shown that dosing AdBlue into the exhaust system of diesel engines to reduce nitrogen oxides can lead to an increase in the number of particles (PN). In addition to the influencing factors of exhaust gas temperature, exhaust gas mass flow and dosing quantity, the dosed medium itself (AdBlue) is not considered as a possible influence due to its regulation in ISO standard 22241. However, as the standard specifies limit value ranges for the individual regulated properties and components for newly sold AdBlue, in reality there is still some margin in the composition. This paper investigates the particle number increase due to AdBlue dosing using several CPCs. The increase in PN is determined by measuring the number of particles after DPF and thus directly before dosing as well as tailpipe. Several AdBlue products from different sources and countries are measured and their composition is also analyzed with regard to the limit values regulated in the standard.
Technical Paper

Analysis of human driving behavior with focus on vehicle lateral control

2024-07-02
2024-01-2997
The optimization and further development of automated driving functions offers great potential to relieve the driver in various driving situations and increase road safety. Simulative testing in particular is an indispensable tool in this process, allowing conclusions to be drawn about the design of automated driving functions at a very early stage of development. In this context, the use of driving simulators provides support so that the driving functions of tomorrow can be experienced in a very safe and reproducible environment. The focus of the acceptance and optimization of automated driving functions is particularly on vehicle lateral control functions. As part of this paper, a test person study was carried out regarding manual vehicle lateral control on the dynamic vehicle road simulator at the Institute of Automotive Engineering.
Technical Paper

Design of a Decentralized Control Strategy for CACC Systems accounting for Uncertainties

2024-06-12
2024-37-0010
Traditional CACC systems utilize inter-vehicle wireless communication to maintain minimal yet safe inter-vehicle distances, thereby improving traffic efficiency. However, introducing communication delays generates system uncertainties that jeopardize string stability, a crucial requirement for robust CACC performance. To address these issues, we introduce a decentralized Model Predictive Control (MPC) approach that incorporates Kalman Filters and state predictors to counteract the uncertainties posed by noise and communication delays. We validate our approach through MATLAB Simulink simulations, using stochastic and mathematical models to capture vehicular dynamics, Wi-Fi communication errors, and sensor noises. In addition, we explore the application of a Reinforcement Learning (RL)-based algorithm to compare its merits and limitations against our decentralized MPC controller, considering factors like feasibility and reliability.
Technical Paper

Evaluation of an optimal engine configuration for a SI Engine Fueled with Ethanol for Stationary Applications

2024-06-12
2024-37-0024
This work aims at investigating the optimal configuration of an internal combustion engine fueled with bio-ethanol for improving its brake power and efficiency as well as for reducing the NOx emissions, in stationary applications. A turbocharged spark ignition engine characterized by a single-point injection was preliminarily considered; subsequently, a direct injection configuration was investigated. For both cases, a 1-D numerical model was developed to compare the injection configurations under stoichiometric conditions and different spark timings. The analysis shows that the direct injection guarantees: a limited improvement of brake power and efficiency when the same spark timing is adopted, while NOx emissions increases by 20%; an increase of 6% in brake power and 2 percentage points in brake thermal efficiency by adopting the knock limited spark advance, but an almost double NOx emissions increase.
Technical Paper

Assessing Heavy Duty Vehicle CO2 Emissions for Qualification as a Zero Emissions Vehicle

2024-06-12
2024-37-0007
The global transportation industry, and road freight in particular, faces formidable challenges in reducing Greenhouse Gas (GHG) emissions; both Europe and the US have already enabled legislation with CO2 / GHG reduction targets. In Europe, targets are set on a fleet level basis: a CO2 baseline has already been established using Heavy Duty Vehicle (HDV) data collected and analyzed by the European Environment Agency (EEA) in 2019/2020. This baseline data has been published as the reference for the required CO2 reductions. More recently, the EU has proposed a Zero Emissions Vehicle definition of 3g CO2/t-km. The Zero Emissions Vehicle (ZEV) designation is expected to be key to a number of market instruments that improve the economics and practicality of hydrogen trucks. This paper assesses the permissible amount of carbon-based fuel in hydrogen fueled vehicles – the Pilot Energy Ratio (PER) – for each regulated subgroup of HDVs in the baseline data set.
Technical Paper

A Numerical Study of the Laminar Flame Speed of Hydrogen/Ammonia Mixtures under Engine-like Conditions

2024-06-12
2024-37-0020
In the effort to achieve the goal of a climate-neutral transportation system, the use of hydrogen and other synthetic fuels plays a key role. As battery electric vehicles become more widespread, e-fuels could be used to defossilize the hard-to-electrify transportation sectors and to store energy produced from renewable and non-continuous energy sources. Among e-fuels, hydrogen and ammonia are very attractive because they are carbon-neutral and their oxidation does not lead to any CO2 emissions. Furthermore, hydrogen/ammonia mixtures overcome the issues that arise as each of the two fuels is separately used. In the automotive sector, the use of either hydrogen, ammonia or their blends require a characterization of such mixtures under engine-like conditions, that is, at high pressures and temperatures. The aim of this work is to evaluate the Laminar Flame Speed (LFS) of hydrogen/ammonia mixtures by varying the thermodynamic conditions and the molar composition of the reactants.
Technical Paper

Model-Based Algorithm for Water Management Diagnosis and Control for PEMFC Systems for Motive Applications

2024-06-12
2024-37-0004
Water management in PEMFC power generation systems is a key point to guarantee optimal performances and durability. It is known that a poor water management has a direct impact on PEMFC voltage, both in drying and flooding conditions: furthermore, water management entails phenomena from micro-scale, i.e., formation and water transport within membrane, to meso-scale, i.e., water capillary transport inside the GDL, up to the macro-scale, i.e., water droplet formation and removal from the GFC. Water transport mechanisms through the membrane are well known in literature, but typically a high computational burden is requested for their proper simulation. To deal with this issue, the authors have developed an analytical model for the water membrane content simulation as function of stack temperature and current density, for fast on-board monitoring and control purposes, with good fit with literature data.
Technical Paper

On Improving CLEAN-SC Maps in The Wind Tunnel

2024-06-12
2024-01-2936
When travelling in an open-jet wind tunnel, the path of an acoustic wave is affected by the flow causing a shift of source positions in acoustical maps of phased arrays outside the flow. The well-known approach of Amiet attempts to correct for this effect by computing travel times between microphones and map points based on the assumption that the boundary layer of the flow, the so-called shear-layer, is infinitely thin and refracts the acoustical ray in a conceptually analogy to optics. However, in reality, the turbulent nature of both the not-so thin shear-layer and the acoustic emission process itself causes an additional smearing of sources in acoustic maps, which in turn causes deconvolution methods based on these maps - the most prominent example being CLEAN-SC - to produce certain ring effects, so-called halos, around sources.
Technical Paper

Structural Dynamic Modelling of HVAC Systems

2024-06-12
2024-01-2923
The structure-, fluid- and air-borne excitation generated by HVAC compressors can lead to annoying noise and low frequency vibrations in the passenger compartment. These noises and vibrations are of great interest in order to maintain high passenger comfort of EV vehicles. The main objective of this paper is to develop a numerical model of the HVAC system and to simulate the structure-borne sound transmission from the compressor through the HVAC hoses to the vehicle in a frequency range up to 1 kHz. An existing automotive HVAC system was fully replicated in the laboratory. Vibration levels were measured on the compressor and on the car body side of the hoses under different operational conditions. Additional measurements were carried out using external excitation of the compressor in order to distinguish between structure- and fluid-borne transmission. The hoses were experimentally characterised with regard to their structure-borne sound transmission characteristics.
Technical Paper

Adaptive Inverse Control of Vibration Exciter for Tracking Target Acceleration of a Car Subsystem

2024-06-12
2024-01-2920
This research aims to develop an inverse control method capable of adaptively simulating dynamic models of car subsystems in the rig-test condition. Accurate simulation of the actual vibration conditions is one of the most crucial factors in realizing reliable rig-test platforms. However, most typical rig tests are conducted under simple random or harmonic sweep conditions. Moreover, the conventional test methods are hard to directly adapt to the actual vibration conditions when switching the dynamic characteristics of the subsystem in the rig test. In the present work, we developed an inverse controller to adaptively control the vibration exciter referring to the target vibration signal. An adaptive LMS filter, employed for the control algorithm, updated the filter weights in real time by referring to the target and the measured acceleration signals.
Technical Paper

Bushing Stiffness Optimization Method for NVH Improvement Using Blocked Force and Energy-Based Index in Suspension System

2024-06-12
2024-01-2921
Reductions in powertrain noise have led to an increased proportion of road noise, prompting various studies aimed at mitigating it. Road excitation primarily traverses through the vehicle suspension system, necessitating careful optimization of the characteristics of bushings at connection points. However, optimizing at the vehicle assembly stage is both time-consuming and costly. Therefore, it is essential to proceed with optimization at the subsystem level using appropriate objective functions. In this study, the blocked force and energy-based index derived from complex power were used to optimize the NVH performance. Calculating the complex power in each bushing enables computing the power flow, thereby providing a basis for evaluating the NVH performance. Through stiffness injection, the frequency response functions (FRF) of the system can be predicted according to arbitrary changes in the bushing stiffness.
Technical Paper

Synergizing Efficiency and Silence: A Novel Approach to E-Machine Development

2024-06-12
2024-01-2914
Traditionally, Electric Machine design has primarily focused on factors like efficiency, packaging, and cost, often neglecting the critical aspects of Noise, Vibration, and Harshness (NVH) in the early decision-making stages. This disconnect between E-Machine design teams and NVH teams has consistently posed a challenge. This paper introduces an innovative workflow that unifies these previously separate domains, facilitating comprehensive optimization by seamlessly integrating NVH considerations with other E-Machine objectives, such as electromagnetic compatibility (EMC). This paper highlights AVL's approach in achieving this transformation and demonstrates how this integrated approach sets a new standard for E-Machine design. The presented approach relies on AI-driven algorithms and computational tools.
Technical Paper

The evolution of conventional vehicles' efficiency for meeting carbon neutrality ambition.

2024-06-12
2024-37-0034
In 2023, the European Union set more ambitious targets for reducing greenhouse gas emissions from passenger cars: the new fleet-wide average targets became 93.6 g/km for 2025, 49.5 g/km in 2030, going to 0 in 2035. One year away from the 2025 target, this study evaluates what contribution to CO2 reduction was achieved from new conventional vehicles and how to interpret forecasts for future efficiency gains. The European Commission’s vehicle efficiency cost-curves suggest that optimal technology adoption can guarantee up to 50% CO2 reduction by 2025 for conventional vehicles. Official registration data between 2013 and 2022, however, reveal only an average 14% increase in fuel efficiency in standard combustion vehicles, although reaching almost 23% for standard hybrids. The smallest gap between certified emissions and best-case scenarios is of 14 g/km, suggesting that some manufacturers’ declared values are approaching the optimum.
Technical Paper

AI-Based Optimization Method of Motor Design Parameters for Enhanced NVH Performance in Electric Vehicles

2024-06-12
2024-01-2927
The high-frequency whining noise produced by motors in modern electric vehicles causes a significant issue, leading to annoyance among passengers. This noise becomes even more noticeable due to the quiet nature of electric vehicles, which lack other noises to mask the high-frequency whining noise. To improve the noise caused by motors, it is essential to optimize various motor design parameters. However, this task requires expert knowledge and a considerable time investment. In this study, we explored the application of artificial intelligence to optimize the NVH performance of motors during the design phase. Firstly, we selected and modeled three benchmark motor types using Motor-CAD. Machine learning models were trained using Design of Experiment methods to simulate batch runs of Motor-CAD inputs and outputs.
Technical Paper

Frequency Response Analysis of Fully Trimmed Models using Compressed Reduced Impedance Matrix Methodology

2024-06-12
2024-01-2947
As vibration and noise regulations become more stringent, numerical models need to incorporate more detailed damping treatments. Commercial frameworks, such as Nastran and Actran, allow the representation of trim components as frequency-dependent reduced impedance matrices (RIM) in frequency response analysis of fully trimmed models. The RIM is versatile enough to couple the trims to modal-based or physical components. If physical, the trim components are reduced on the physical coupling degrees of freedom (DOFs) for each connected interface. If modal, the RIMs are projected on the eigenmodes of the connected component. While a model size reduction is achieved compared to the original model, most numerical models possess an extensive number of interfaces DOFs, either modal or physical, leading to large dense RIM which triggers substantial memory and disk storage.
X