Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Hydrotreated Vegetable Oil and Miller Timing in a Medium-Speed CI Engine

2012-04-16
2012-01-0862
The objective of this paper is to analyse the performance and the combustion of a large-bore single-cylinder medium speed engine running with hydrotreated vegetable oil. This fuel has a paraffinic chemical structure and high Cetane number. These features enable achievement of complete and clean combustion with different engine setups. The main benefits are thus lower soot and nitrogen oxides emissions compared to diesel fuel. The facility used in this study is a research engine, where the conditions upstream the machine, the valve timing and the injection parameters are fully adjustable. In fact, the boundary conditions upstream and downstream the engine are freely controlled by a separated supply air plant and by a throttle valve, located at the end of the exhaust pipe. The injection system is common-rail: rail pressure, injection timing and duration are completely adjustable.
Technical Paper

Experimental Study of Spray Characteristics between Hydrotreated Vegetable Oil (HVO) and Crude Oil Based EN 590 Diesel Fuel

2011-09-11
2011-24-0042
The aim of current study was to compare the global fuel spray characteristics between renewable hydrotreated vegetable oil (HVO) and crude oil-based EN 590 diesel fuel. According to previous studies, the use of HVO enables reductions in carbon monoxide (CO), total hydrocarbon (THC), nitrogen oxide (NOx) and particle matter (PM) emissions without any changes to the engine or its controls. Fuel injection strategies and global fuel spray characteristics affect on engine combustion and exhaust gas emissions. Due to different physical properties of two different fuels, fuel spray characteristics differ. Fuel spray studies were performed with backlight imaging using a pressurized test chamber imitating real engine conditions at the end of compression stroke. However, the measurements were made in non-evaporative conditions. Various injection parameters such as injection pressures and orifice diameter were tested.
Journal Article

Large-Bore Compression-Ignition Engines: High NOx Reduction Achieved at Low Load with Hydro-Treated Vegetable Oil

2011-08-30
2011-01-1956
The objective of this paper is to analyze the performance and the combustion of a large-bore medium-speed engine running with hydro-treated vegetable oil (HVO) at low engine load. This fuel has a paraffinic chemical structure and high cetane number (CN). The main benefits are thus lower emission compared to diesel fuel and low soot values. The facility used in this study is a research engine, where the conditions before and after the machine, the valve timing and the injection parameters are fully adjustable. Several in-cylinder conditions before the combustion have been tested. The results are promising and show the benefits of HVO compared to diesel fuel. In fact, it has been possible to reduce nitrogen oxides (NOx) emission over 50% running with HVO and opportunely tuned valve timing.
Technical Paper

NOx Reduction in a Medium-Speed Single-Cylinder Diesel Engine using Miller Cycle with Very Advanced Valve Timing

2009-09-13
2009-24-0112
The objective of this study is to achieve high reduction of NOx emissions in a medium-speed single-cylinder research engine. The main feature of this research engine is that the gas exchange valve timing is completely adjustable with electro-hydraulic actuators. The study is carried out at high engine load and using a very advanced Miller valve timing. Since the engine has no turbocharger, but a separate charge air system, 1-D simulations are carried out to find the engine setup, which would be close to the operating points of a real engine. The obtained NOx reduction is over 40% with no penalty in fuel consumption.
Journal Article

Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine

2008-10-06
2008-01-2500
Hydrotreating of vegetable oils or animal fats is an alternative process to esterification for producing biobased diesel fuels. Hydrotreated products are also called renewable diesel fuels. Hydrotreated vegetable oils (HVO) do not have the detrimental effects of ester-type biodiesel fuels, like increased NOx emission, deposit formation, storage stability problems, more rapid aging of engine oil or poor cold properties. HVOs are straight chain paraffinic hydrocarbons that are free of aromatics, oxygen and sulfur and have high cetane numbers. In this paper, NOx - particulate emission trade-off and NOx - fuel consumption trade-off are studied using different fuel injection timings in a turbocharged charge air cooled common rail heavy duty diesel engine. Tested fuels were sulfur free diesel fuel, neat HVO, and a 30% HVO + 70% diesel fuel blend. The study shows that there is potential for optimizing engine settings together with enhanced fuel composition.
Technical Paper

Novel Two-Stroke Engine Concept, Feasibility Study

2003-10-27
2003-01-3211
A novel two-stroke engine concept is introduced. The cylinder scavenging takes place during the upward motion of the piston. The gas exchange valves are similar to typical four-stroke valves, but the intake valves are smaller and lighter. The scavenging air pressure is remarkably higher than in present-day engines. The high scavenging air pressure is produced by an external compressor. The two-stroke operation is achieved without the drawbacks of port scavenged engines. Moreover, the combustion circumstances, charge pressure and temperature and internal exhaust gas re-circulation (EGR) can be controlled by using valve timings. There is good potential for a substantial reduction in NOx emissions through the use of adjustable compression pressure and temperature and by using the adjustable amount of exhaust gas re-circulation.
X