Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Design of Drive Cycle for Electric Powertrain Testing

2023-04-11
2023-01-0482
Drive cycles have been the official way to create standardized comparisons of fuel economy and emission levels between vehicles. Since the 1970s these have evolved to be more representative of real-world driving, with today’s standard being the World Harmonized Light Vehicle Testing Procedure. The performance of battery electric vehicles which consist of electric drives, battery, regenerative braking and their management systems may differ when compared to that of vehicles powered by conventional internal combustion engines. However, drive cycles used for evaluating the performance of vehicles, were originally developed for conventional powered vehicles. Moreover, the kinematic parameters that can distinguish the real-world performance of the differently powered vehicles are not fully known. This work aims to investigate the difference between vehicles powered by pure internal combustion engine, electric hybrid and pure electric drive.
Technical Paper

A Case for Technology - Forcing Transformative Changes in the F1 Power Unit

2021-04-06
2021-01-0371
Formula 1 has always played a major role in technological advancements within the automotive and motorsport sectors. The adaptive changes introduced for the Power Unit (PU) in 2014 forced constructors, in collaboration with industry partners, to invent technologies for exceeding 50% brake thermal efficiency within a short span of time, demonstrating that technology-forcing regulations through motorsport is the favorable route to achieve transformative changes within the automotive sector. Therefore, in an attempt to address arising global warming and health concerns, the present work analytically examines the ambient air quality in track stadia during F1 race events to identify potential PU exhaust emission targets. It models the volume of air contained within the circuits located near heavily built-up areas assuming stagnant air conditions and uniform mixing.
Technical Paper

Hydrogen Fuel Cell Vehicle for Mexico City

2020-04-14
2020-01-1169
The search for alternative fuel for transport vehicles and also replacement of internal combustion engines in order to reduce the harmful emissions have been forcing the vehicle manufacturers to innovate new technology solutions for meeting the stringent legislative targets. Mexico’s commitment for de-carbonisation of transport sector and meeting the environmental goals is shaping it especially, and with this, it favours the move towards electrification of the vehicles. The aim of the present work is to numerically evaluate the possibility of replacing the IC engine in the existing hybrid vehicles with the Hydrogen fuel cell system. This work modelled a Hydrogen fuel cell vehicle based on Toyota MIRAI and validated the fuel economy performance of the vehicle using experimental data. This validated model was used to estimate the fuel economy for real-world drive cycles generated in 2019 from Mexico City.
Technical Paper

Route Selection Strategy for Hybrid Vehicles Based on Energy Management and Real Time Drive Cycles

2018-04-03
2018-01-0995
Air pollution levels in an urban environment is a major concern for developed and developing countries alike. Governments around the world are constantly trying to control and reduce air pollution levels through regulations. Low emission zones are being designated in cities worldwide in order to reduce the level of pollutants in big cities. The automotive industry is affected by those regulations and they are becoming more demanding over the years. Present work is aimed at developing a control strategy for a hybrid vehicle in order to optimize the fuel economy and emission levels based on GPS information, driver specific driving characteristics and weather forecast data for a given route. It uses powertrain model of a hybrid vehicle for developing route and driver specific control strategy. The full vehicle model has two sub-models: a route selector and a powertrain optimization model.
Technical Paper

Cepstrum Analysis of a Rate Tube Injection Measurement Device

2016-10-17
2016-01-2196
With a push to continuously develop traditional engine technology efficiencies and meet stringent emissions requirements, there is a need to improve the precision of injection rate measurement used to characterise the performance of the fuel injectors. New challenges in precisely characterising injection rate present themselves to the Original Equipment Manufacturers (OEMs), with the additional requirements to measure multiple injection strategies, increased injection pressure and rate features. One commonly used method of measurement is the rate tube injection analyser; it measures the pressure wave caused by the injection within a column of stationary fluid. In a rate tube, one of the significant sources of signal distortion is a result of the injected fluid pressure waves reflected back from the tube termination.
Technical Paper

Technology Choices for Optimizing the Performance of Racing Vehicles

2016-04-05
2016-01-1173
In the continuous search for technology to improve the fuel economy and reduce greenhouse gas emission levels from the automotive vehicle, the automotive industry has been evaluating various technological options. Since the introduction of stringent legislative targets in Europe as well as in the United States of America in late 20th Century, one of the viable options identified by the industry was the application of alternative powertrain. On the motorsport arena, changes introduced by the Formula 1 governing body (FIA) for the high-performance racing engines also focuses on fuel economy. FIA regulation for 2014 restricts the fuel-flow rate to a maximum of 100kg/hr beyond 10,500 rev/min and prescribe fuel flow rate below 10,500 rev/min operating conditions for the F1 Engines. In addition, Formula1 and Le Mans racing regulations actively promote the integration of the hybrid powertrain in order to achieve optimum fuel economy.
Technical Paper

Performance of Ancillary Systems of 2014+ Le Mans LMP1-H Vehicles and Optimization

2015-04-14
2015-01-1163
This study details the investigation into the hybridization of engine ancillary systems for 2014+ Le Mans LMP1-H vehicles. This was conducted in order to counteract the new strict fuel-limiting requirements governing the powertrain system employed in this type of vehicle. Dymola 1D vehicle simulation software was used to construct a rectilinear vehicle model with a map based 3.8L V8 engine and its associated ancillary systems, including oil pumps, water pump and fuel pump as well as a full kinetic energy recovery system (ERS). Appropriate validation strategy was implemented to validate the model. A validated model was used to study the difference in fuel consumption for the conventional ancillary drive off of the internal combustion engine in various situational tests and a hybrid-electric drive for driving engine ancillaries.
Technical Paper

Nanofluids and Thermal Management Strategy for Automotive Application

2015-04-14
2015-01-1753
Stringent emission norms introduced by the legislators over the decades has forced automotive manufacturers to improve the fuel economy and emission levels of their engines continuously. Therefore, the emission levels of modern engines are significantly lower than pre-1990 engines. However, the improvement in fuel economy is marginal when compared to that of emission levels. For example, approximately 30% of total energy in the fuel is being wasted through the cooling systems in the modern engines. Therefore, thermal management systems are being developed to reduce these losses and offer new opportunities for improving the fuel economy of the vehicles. One of the new emerging technologies for thermal management is the use of nanofluids as coolant. Nanofluids are a mixture of nano-sized particles added to a base fluid to improve its thermal characteristics.
Technical Paper

Numerical Simulation of Warm-Up Characteristics and Thermal Management of a GDI Engine

2013-04-08
2013-01-0870
Improving the thermal efficiency of internal combustion engines over the engine operating range is essential for achieving optimum fuel economy. The thermal efficiency of the engine during cold start is one of the areas where significant improvement can be made if a suitable thermal management strategy is identified and implemented. Thermal management strategy in an engine can allow the engine to work at different operating temperatures in order to reduce the heat transfer loss by ensuring optimum volumetric efficiency, efficient combustion and adequate safety margin for the durability of mechanical components. The aim of the present work was to numerically model the warm-up characteristics of a 4 cylinder, 1.6 litre, turbocharged and intercooled, Euro IV, gasoline direct injected engine. It used a fully validated engine model which works based on the predictive combustion model.
Technical Paper

The Effect of Engine Operating Conditions on Engine-out Particulate Matter from a Gasoline Direct-injection Engine during Cold-start.

2012-09-10
2012-01-1711
This work investigates the effect of engine operating conditions and exhaust sampling conditions (i.e. dilution ratio) on engine-out, nano-scale, particulate matter emissions from a gasoline direct-injection engine during cold-start and warm-up transients. The engine used for this research was an in-line four cylinder, four stroke, wall-guided direct-injection, turbo-charged and inter-cooled 1.6 l gasoline engine. A fast-response particulate spectrometer for exhaust nano-particle measurement up to 1000 nm was utilized, along with a spark-plug mounted pressure transducer for combustion analysis. It was observed that the total particle count decreases during the cold-start transient, and has a distinct relationship with the engine body temperature. Tests have shown that the engine body temperature may be used as a control strategy for engine-out particulate emissions.
Technical Paper

Numerical Simulation of Adaptive Combustion Control for Fuel-Neutral ‘Smart’ Engines

2011-04-12
2011-01-0848
The search for next generation transportation fuels in order to fully or partially replace petrol based fuels has resulted in use of varieties of fuels and fuel blends in internal combustion engines. However, the engine management systems are fuel specific and therefore, every major change in fuel composition requires significant amount of calibration work to optimize the operating variables in order to meet legislative emission targets and reduce the real-world emission and improve fuel economy levels. The current work has successfully devised a numerical simulation for the operation of a modern 4-cylinder turbocharged engine using an adaptive combustion modelling methodology that identifies a fuel type during engine start itself, and adapts engine operating parameters for optimum performance. A strategy was devised to use commercially available sensors to obtain and correlate measurable cylinder pressure based information for fuel identification.
Journal Article

Characteristics of Nano-Scale Particulates from Gasoline Turbo-Intercooled Direct-Injection Engine

2010-10-25
2010-01-2197
This study aims to identify the factors that control particulate matter (PM) formation and size distribution in direct-injection spark-ignition (DISI) engines. The test engine used for this research was a 1.6 litre, wall-guided DISI, turbocharged, intercooled, in-line 4 cylinder, Euro IV engine. The exhaust sampling point was before the catalytic converter, i.e. engine-out emissions were measured. The first part of this paper investigates the characteristics of PM number and size distribution of DISI and throttle body injected (TBI) engines. The second part investigates the effect of combustion characteristics of DISI engines on the number of 5nm and 10nm (nucleation) and 200nm (accumulation) PM. A statistical analysis of the coefficient of variance (COV) of the maximum rate of pressure rise (RPmax) over 100 cycles was performed against the COV of 5nm, 10nm and 200nm total particle number.
Technical Paper

Hydrogen Enriched Diesel Combustion

2010-10-25
2010-01-2190
Improving fuel economy and reducing greenhouse gas emissions from vehicle sources have been major research themes in recent times. One of the ways to achieve this is to use alternative fuels that can fully or partly replace petroleum-derived fuels using existing internal combustion engine technology so that the benefit from the alternative fuels can be realized immediately without delay. The present work attempted to investigate the performance and emission characteristics of a diesel engine using conventional diesel fuel with mixtures of hydrogen and oxygen generated from water at the point of use. Small amounts of hydrogen and oxygen were introduced in the air stream at the time of induction so that no extra injection system or additional modifications to the existing engine were required.
Technical Paper

Combustion Characteristics and Cycle-By-Cycle Variation in a Turbocharged-Intercooled Gasoline Direct-Injected Engine

2010-04-12
2010-01-0348
This work experimentally investigated the combustion characteristics and cycle-by-cycle variations of a turbocharged, intercooled, gasoline direct injected spark ignition (DISI) engine at a wide range of operating conditions. The cycle-by-cycle variations have been characterized by the coefficient of variance of (COV) cylinder pressure against crank angle, the indicated mean effective pressure (IMEP) and 50% mass fraction burned. The combustion characteristics and cyclic variability of the DISI engine are compared with data from throttle body injected engines throughout the analysis to draw conclusions. The present work identified that the COV of pressure reaches a minimum value at the end of the compression stroke and this minimum value is independent of engine type and the loading conditions investigated. It also identified that the maximum COV value of the pressure against crank angle during combustion does not change significantly with load for the throttle body injected engine.
X