Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Use of an Innovative Modular Gripper System for Flexible Aircraft Assembly Operations

2016-09-27
2016-01-2108
The rising demand for civil aircraft leads to the development of flexible and adaptive production systems in aviation industry. Due to economic efficiency, operational accuracy and high performance these manufacturing and assembly systems must be technologically robust and standardized. The current aircraft assembly and its jigs are characterized by a high complexity with poor changeability and low adaptability. In this context, the use of industrial robots and standardized jigs promise highly flexible and accurate complex assembly operations. This paper deals with the flexible and adaptable aircraft assembly based on industrial robots with special end-effectors for shaping operations. By the development and use of lightweight gripper system made of carbon fiber reinforced plastics the required scaling, robustness and stiffness of the whole assembly system can be realized.
Technical Paper

Robot Capability Test and Development of Industrial Robot Positioning System for the Aerospace Industry

2005-10-03
2005-01-3336
The paper details two phases of work completed by Airbus UK to create a standard deployment platform for robotic processes. The initial part of the paper focuses on an aerospace capability study developed to benchmark a number of robot models. The tests define absolute accuracies within full and restricted work envelopes, static and dynamic flexure, and temperature effects on the robot manipulator. The second part of the paper describes the development of an adaptive control process to accurately position singular or co-operating robots within a large working envelope. The solution is not dependent on complex software algorithms within the robot controller or restrictive laser metrology interfaces. The paper illustrates how a number of standard industrial products can be ‘fused together’ to provide a robust industrial solution.
Technical Paper

A Study of the Influence of Drilling Method and Hole quality on Static Strength and Fatigue Life of Carbon Fiber Reinforced Plastic Aircraft Material

2002-10-01
2002-01-2650
This paper describes ongoing research on the effects of hole quality on basic material properties / allowables of carbon fibre composite material. Using a novel test programme, the benefits of orbital drilling over traditional (or conventional) methods have been compared. Static (compression and tension) and dynamic (fatigue) tests have been performed on standard aerospace industry coupons. In order to identify the influence of the drilling method on the fracture behavior and fatigue properties of the material, acoustic emission has been performed during the testing. Roundness and surface replica studies have enabled the geometrical properties of the holes to be defined at different stages of the test. These measurement techniques were performed in order to correlate and understand the preliminary results of the tests.
X