Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A New Design of Low Cost V-band Joint

2016-09-27
2016-01-2128
In this work we have proposed an interesting clamping solution of V-band which has an important industrial impact by reducing the cost and assembly process as well compare to the traditional V-band. The design what we are focusing for is applied for all size of turbochargers which helps to connect the hot components such as manifold and turbine housing. The cost for V-band is mainly from T-bolt. It is made from special stainless steel which represents 50% of the total cost. In this work it is proposed a new V-band joint by changing bolt clamping status from tension to compression. From tension to compression we change the bolt material from high cost steel to low cost steel. The new total cost is reduced by 40%. The prototype is made and performed in static tests including anti-rotating torque test and salt spray test. The new joint meets the design requirements at static condition. Further work will focus on the dynamic qualification and at high temperature as well.
Technical Paper

Heat Exchanger Fouling Detection in Aircraft Environmental Control Systems

2012-10-22
2012-01-2107
The operating environment of aircraft causes accumulation and build-up of contamination on both the narrowest passages of the ECS (Environmental Control System) i.e: the heat exchangers. Accumulated contamination may lead to reduction of performance over time, and in some case to failures causing AOG (Aircraft on Ground), customer dissatisfaction and elevated repair costs. Airframers/airlines eschew fixed maintenance cleaning intervals because of the high cost of removing and cleaning these devices preferring instead to rely on on-condition maintenance. In addition, on-wing cleaning is t impractical because of installation constrains. Hence, it is desirable to have a contamination monitoring that could alert the maintenance crew in advance to prepare and minimize disruption when contamination levels exceed acceptable thresholds. Two methods are proposed to achieve this task, The effectiveness of these methods are demonstrated using analytical and computational tools.
Technical Paper

Advanced Electric Generators for Aerospace More Electric Architectures

2010-11-02
2010-01-1758
This paper discusses the problem of designing electric machines (EM) for advanced electric generators (AEG) used in aerospace more electric architecture (MEA) that would be applicable to aircraft, spacecraft, and military ground vehicles. The AEG's are analyzed using aspects of Six Sigma theory that relate to critical-to-quality (CTQ) subjects. Using this approach, weight, volume, reliability, efficiency, and cost (CTQs) are addressed to develop a balance among them, resulting in an optimized power generation system. The influence of the machine power conditioners and system considerations are also discussed. As a part of the machine evaluation process, speeds, bearings, complexities, rotor mechanical and thermal limitations, torque pulsations, currents, and power densities are also considered. A methodology for electric machine selection is demonstrated. Examples of high-speed, high-performance machine applications are shown.
Technical Paper

Corrosion Testing of Brazed Space Station IATCS Materials

2004-07-19
2004-01-2471
Increased nickel concentrations in the IATCS coolant prompted a study of the corrosion rates of nickel-brazed heat exchangers in the system. The testing has shown that corrosion is occurring in a silicon-rich intermetallic phase in the braze filler of coldplates and heat exchangers as the result of a decrease in the coolant pH brought about by cabin carbon dioxide permeation through polymeric flexhoses. Similar corrosion is occurring in the EMU de-ionized water loop. Certain heat exchangers and coldplates have more silicon-rich phase because of their manufacturing method, and those units produce more nickel corrosion product. Silver biocide additions did not induce pitting corrosion at silver precipitate sites.
Technical Paper

Development and Application of a Real Time Bleed Air Contamination Monitor

2002-11-05
2002-01-2925
The bleed air contamination monitor was developed at Honeywell to ensure that our products provide the highest quality bleed air to aircraft environmental control systems. The bleed air contamination monitor is currently for ground based applications only. It is being developed into an on board system for future applications. Current Aircraft Cabin Air Quality measurement techniques are very labor intensive and require days or even weeks of laboratory analysis to provide results. This is unacceptable from a manufacturing and service perspective. Development of a real time analyzer began in the early 1990s and has progressed to a point where a product is ready for introduction that not only provides real time information regarding engine air contamination, but is also easy for operators to use with a minimum amount of training.
Technical Paper

Inerting Aircraft Fuel Tanks - Reducing the Hazard

2000-07-10
2000-01-2267
Aircraft accidents caused by explosion of the vapor within the fuel tanks have been the subject of many recent articles. Methods of either suppressing the combustion or preventing the ignition have been considered. Indeed, solutions such as liquid nitrogen, halon, and reticulated foam have been installed on production aircraft. However, these have proved to be expensive to operate or are being phased out. By working together, the authors have developed the capability to provide fully integrated On-Board Inert Gas Generating Systems (OBIGGS) based on novel hollow fiber membrane technology. An overview of the advantages of such an approach is presented together with an outline of the system design method. The importance of considering the effect of differing flight profiles, and the inter-reactions of the OBIGGS, with the Fuel System, Engine Bleed Air Management, and Environmental Control Systems in the design process are emphasized.
Technical Paper

A Market Perspective on FANS

1993-09-01
932521
The implementation of the Future Air Navigation System (FANS) will be evolutionary rather than revolutionary. Different generations of airplane models, each operating in a variety of operating environments will dictate more than a single growth path. How these markets will evolve is a function of our collective ability to assign benefits to specific equipage, to forge new business relationships and to address the market as a global one. Realization of the full benefits of FANS will depend on leadership: who and when.
X