Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

A Three-Layer Model for Ice Crystal Icing in Aircraft Engines

2023-06-15
2023-01-1481
This paper presents the current state of a three-layer surface icing model for ice crystal icing risk assessment in aircraft engines, being developed jointly by Ansys and Honeywell to account for possible heat transfer from inside an engine into the flow path where ice accretion occurs. The bottom layer of the proposed model represents a thin metal sheet as a substrate surface to conductively transfer heat from an engine-internal reservoir to the ice layer. The middle layer is accretion ice with a porous structure able to hold a certain amount of liquid water. A shallow water film layer on the top receives impinged ice crystals. A mass and energy balance calculation for the film determines ice accretion rate. Water wicking and recovery is introduced to transfer liquid water between film layer and porous ice accretion layer.
Technical Paper

Minimum Operational Performance Standards for Weather Radar Ice Crystal Detection Function

2023-06-15
2023-01-1433
The RTCA SC-230 committee began working on minimum operational performance standards (MOPS) for ice crystal detection using weather radar in 2018. The resulting MOPS document will be released in 2023. This paper presents the rationale, summarizes key requirements, and discusses means of validation for an ice crystal detection function incorporated in an airborne weather radar system.
Journal Article

Los Alamos High-Energy Neutron Testing Handbook

2020-03-10
2020-01-0054
The purpose of the Los Alamos High-Energy Neutron Testing Handbook is to provide user information and guidelines for testing Integrated Circuits (IC) and electronic systems at the Irradiation of Chips and Electronics (ICE) Houses at the Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory (LANL). Microelectronic technology is constantly advancing to higher density, faster devices and lower voltages. These factors may increase device susceptibility to radiation effects. The high-energy neutron source at LANSCE/LANL provides the capability for accelerated neutron testing of semiconductor devices and electronic systems and to simulate effects in various neutron environments.
Journal Article

High Altitude Ice Crystal Detection with Aircraft X-band Weather Radar

2019-06-10
2019-01-2026
During participation on EU FP7 HAIC project, Honeywell has developed methodology to detect High Altitude Ice Crystals with the Honeywell IntuVue® RDR-4000 X-band Weather Radar. The algorithm utilizes 3D weather buffer of RDR-4000 weather radar and is based on machine learning. The modified RDR-4000 Weather Radar was successfully flight tested during 2016 HAIC Validation Campaign; the technology was granted Technology Readiness Level 6 by HAIC consortium. After the end of HAIC project, the method was also evaluated with respect to newly set preliminary industry standard performance requirements1. This paper discuses technology design rationale, high level technology architecture, technology performance, and challenges associated with performance evaluation.
Journal Article

Powder Reuse and Its Effects on Laser Based Powder Fusion Additive Manufactured Alloy 718

2016-09-20
2016-01-2071
Laser Based Powder Bed Fusion, a specific application of additive manufacturing, has shown promise to replace traditionally fabricated components, including castings and wrought products (and multiple-piece assemblies thereof). In this process, powder is applied, layer by layer, to a build plate, and each layer is fused by a laser to the layers below. Depending on the component, it appears that only 3-5% of the powder charged into the powder bed fusion machine is fused. Honeywell’s initial part qualification efforts have prohibited the reuse of powder. Any unfused powder that exits the dispenser (i.e., surrounds the build or is captured in the overflow) is considered used. In order for the process to be broadly applicable in an economical manner, a methodology should be developed to render the balance of the powder (up to 97% of the initial charge weight) as re-usable.
Journal Article

HTF7000 Engine Design, Development and Uses

2013-09-17
2013-01-2228
Honeywell has developed a unique turbofan engine for application to the super mid-size business aviation market, the HTF7000. This paper will describe the design of this engine including aeromechanical design of its components. The unique design features of this engine will be described along with the technology growth path to keep the engine current. This paper will also describe several features which have been developed for this engine in response to new regulatory requirements. Some aspects of the engine to aircraft integration will also be described.
Technical Paper

Refinements to Mechanical Health Monitoring Algorithms

2012-10-22
2012-01-2096
This paper discusses recent improvements made by Honeywell's Condition-Based Maintenance (CBM) Center of Excellence (COE) to Mechanical Health Management (MHM) algorithms. The Honeywell approach fuses Condition Indicators (CIs) from vibration monitoring and oil debris monitoring. This paper focuses on using MHM algorithms for monitoring gas turbine engines. First an overview is given that explains the general MHM approach, and then specific examples of how the algorithms are being refined are presented. One of the improvements discussed involves how to detect a fault earlier in the fault progression, while continuing to avoid false alarms. The second improvement discussed is how to make end of life thresholds more robust: rather than relying solely on the cumulative mass of oil debris, the end of life indication is supplemented with indicators that consider the rate of debris generation.
Technical Paper

Development of a Passive Gas Trap for Internal Thermal Control System

2009-07-12
2009-01-2452
A passive gas removal device, i.e. gas trap is used in the Internal Thermal Control System (ITCS) of the International Space Station (ISS) to remove non-condensable gases to prevent the cavitation or air locking of the pump and malfunction of the pressure and flow sensors. Since the non-condensable gases are always ingested into the ITCS during the routine maintenance and/or replacement of components in the ITCS, it is necessary to have an efficient and reliable gas trap in the liquid coolant loop of the ITCS. To increase tolerance to particulate and microbial growth fouling, extend the operational life, reduce the cost and on-orbit maintenance, and decrease crew workload, an alternative gas trap composed of only one type of membrane is developed. This paper describes the efforts involved in this development, which include the design concept of the alternative gas trap, performance modeling, and the preliminary performance test of the alternative gas trap in the relevant environment.
Technical Paper

A Novel Control Scheme to Increase Electrical Torque of a Drive System for Aircraft Main Engine and APU Start

2006-11-07
2006-01-3070
This paper presents a novel scheme for the start-up of prime movers in starter/generator systems, such as main engine and auxiliary power units (APUs) in aerospace applications. The paper discusses this novel technique in detail for providing single-phase excitation techniques to a start exciter in a starter/generator system to increase the torque per ampere and lower the excitation voltage requirement. Simulation results are provided comparing this novel scheme with a traditional method.
Technical Paper

Electric Starting of Large Aircraft Engines

2002-11-05
2002-01-2953
This paper examines why large aircraft engines are started the way they are today, and why that may all change in the not too distant future. Electric starting of aircraft engines and Auxiliary Power Units (APU) has been limited to 28 VDC battery systems, with starting power typically under 10 kW. Above this power level the very high battery currents, and resulting voltage drops, make the approach less and less practical. Large engines for commercial transports may require more than 100 kW to start so low voltage battery starting will not be an option.
Technical Paper

Design and Development of a Hydrophilic-Coated Evaporator System for Heat Rejection in Space

2001-07-09
2001-01-2153
An evaporative heat exchanger system, suitable for rejecting heat in a space environment, has been developed. The system is designed to use water as the evaporant, although other fluids are possible. The major components of the system include an evaporative heat exchanger, water spray nozzles, a back-pressure regulator, a pressurized water supply tank, and appropriate controls. The heat exchanger is a high-performance aircraft-type plate-fin design, with a proprietary hydrophilic coating applied to the evaporant-side flow passages. The hydrophilic coating promotes good contact between the evaporating water and the hot heat transfer surfaces.
X