Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Electrical Energy Storage to Meet Evolving Aircraft Needs

2012-10-22
2012-01-2199
The value of “ultracapacitors” (also referred to as “supercapacitors” or “electric double layer capacitors” in some literature) as an augmentation device when placed in parallel with “electrochemical” energy storage (i.e. battery) is presented in this paper. Since ultracapacitors possess unique attributes due to their higher value of energy storage density (or Joules/WattHrs per mass) compared to conventional capacitors while maintaining the peak power providing capability (to some degree) typical of conventional capacitors they may provide a near term solution in applications demanding longer battery operating life when placed in parallel. Such demands may be pronounced by the onset of More-Electric-Aircraft peak loads and “cold-crank” Auxiliary Power Unit (APU) electric-starting in demanding cold temperature environments.
Technical Paper

The Orion Air Monitor Performance Model; Dynamic Simulations and Accuracy Assessments in the CEV Atmospheric Revitalization Unit Application

2009-07-12
2009-01-2521
The Orion Air Monitor (OAM), a derivative of the International Space Station's Major Constituent Analyzer (MCA) (1–3) and the Skylab Mass Spectrometer (4, 5), is a mass spectrometer-based system designed to monitor nitrogen, oxygen, carbon dioxide, and water vapor. In the Crew Exploration Vehicle, the instrument will serve two primary functions: 1) provide Environmental Control and Life Support System (ECLSS) data to control nitrogen and oxygen pressure, and 2) provide feedback the ECLSS water vapor and CO2 removal system for swing-bed control. The control bands for these ECLSS systems affect consumables use, and therefore launch mass, putting a premium on a highly accurate, fast-response, analyzer subsystem. This paper describes a dynamic analytical model for the OAM, relating the findings of that model to design features required for accuracies and response times important to the CEV application.
Technical Paper

Smoke Detection for the Orion Crew Exploration Vehicle

2009-07-12
2009-01-2542
The Orion Crew Exploration Vehicle (CEV) requires a smoke detector for the detection of particulate smoke products as part of the Fire Detection and Suppression (FDS) system. The smoke detector described in this paper is an adaptation of a mature commercial aircraft design for manned spaceflight. Changes made to the original design include upgrading the materials and electronics to space-qualified components, and modifying the mechanical design to withstand launch and landing loads. The results of laboratory characterization of the response of the new design to test particles are presented.
Technical Paper

Evaluation of Commercial Off-the-Shelf Ammonia Sorbents and Carbon Monoxide Oxidation Catalysts

2008-06-29
2008-01-2097
Designers of future space vehicles envision simplifying the Atmosphere Revitalization (AR) system by combining the functions of trace contaminant (TC) control and carbon dioxide removal into one swing-bed system. Flow rates and bed sizes of the TC and CO2 systems have historically been very different. There is uncertainty about the ability of trace contaminant sorbents to adsorb adequately in a high-flow or short bed length configurations, and to desorb adequately during short vacuum exposures. This paper describes preliminary results of a comparative experimental investigation into adsorbents for trace contaminant control. Ammonia sorbents and low temperature catalysts for CO oxidation are the foci. The data will be useful to designers of AR systems for Constellation. Plans for extended and repeated vacuum exposure of ammonia sorbents are also presented.
Journal Article

The Orion Air Monitor; an Optimized Analyzer for Environmental Control and Life Support

2008-06-29
2008-01-2046
This paper describes the requirements for and design implementation of an air monitor for the Orion Crew Exploration Vehicle (CEV). The air monitor is specified to monitor oxygen, nitrogen, water vapor, and carbon dioxide, and participates with the Environmental Control Life Support System (ECLSS) pressure control system and Atmosphere Revitalization System (ARS) to help maintain a breathable and safe environment. The sensing requirements are similar to those delivered by the International Space Station (ISS) air monitor, the Major Constituent Analyzer or MCA (1, 2 and 3), and the predecessors to that instrument, the Skylab Mass Spectrometer (4, 5), although with a shift in emphasis from extended operations to minimized weight. The Orion emphasis on weight and power, and relatively simpler requirements on operating life, allow optimization of the instrument toward the mass of a sensor assembly.
Technical Paper

Education Outreach Associated with Technology Transfer in a Colonia of South Texas: Green Valley Farms Science and Space Club for Middle School Aged Children in Green Valley Farms, San Benito, Texas

2004-07-19
2004-01-2419
Texas colonias are unincorporated subdivisions characterized by inadequate water and wastewater infrastructure, inadequate drainage and road infrastructure, substandard housing, and poverty. Since 1989 the Texas Legislature has implemented policies to halt further development of colonias and to address water and wastewater infrastructure needs in existing and new colonias along the border with Mexico. Government programs and non-government and private organization projects aim to address these infrastructure needs. Texas Tech University's Water Resources Center demonstrated the use of alternative on-site wastewater treatment in the Green Valley Farms colonia, San Benito, Texas. The work in Green Valley Farms was a component of a NASA-funded project entitled “Evaluation of NASA's Advanced Life Support Integrated Water Recovery System for Non-Optimal Conditions and Terrestrial Applications.” Two households within the colonia were demonstration sites for the constructed wetlands.
Technical Paper

Atmospheric Monitoring Strategy for Ground Testing of Closed Ecological Life Support Systems

2004-07-19
2004-01-2477
This paper reviews the evolution and current state of atmospheric monitoring on the International Space Station to provide context from which we can imagine a more advanced and integrated system. The unique environmental hazards of human space flight are identified and categorized into groups, taking into consideration the time required for the hazard to become a threat to human health or performance. The key functions of a comprehensive monitoring strategy for a closed ecological life support system are derived from past experience and a survey of currently available technologies for monitoring air quality. Finally, a system architecture is developed incorporating the lessons learned from ISS and other analogous closed life support systems. The paper concludes by presenting recommendations on how to proceed with requirements definition and conceptual design of an air monitoring system for exploration missions.
Technical Paper

Carbon Dioxide Removal Assembly Software Product Improvements

2004-07-19
2004-01-2545
The Carbon Dioxide Removal Assembly (CDRA) on board the International Space Station (ISS) has experienced periodic check valve and selector valve failures as a result of a gradual build-up of contamination from particles that have breeched the adsorbent bed seals. The current software that controls CDRA has limitations that make troubleshooting the unit difficult in these situations, in large part due to the fact that valve position telemetry is only available during certain times. There are also situations where it is required to perform operations manually that would benefit from added code logic and commands to facilitate these operations. The software has been reviewed for possible upgrades and changes that will allow engineers to better troubleshoot the unit in the event of various failures and also allow for better operability in degraded states.
Technical Paper

Advanced Technology Spacesuit Ejector Testing and Analysis

1998-07-13
981670
An experimental study has been made of compressible jet mixing in an axisymmetric ejector of converging-diverging geometry. Three different jet sizes, 0.01, 0.0235, and 0.045 in. diameter were tested with three different mixer sizes, 0.25, 0.286, and 0.36 in. diameter. Jet and mixer combination were tested along with varying jet to mixer distances. The jet pressure varied from 20 to 200 psig, jet mass varied from 0.3 lbm/hr to 10 lbm/hr., and jet temperature varied from 21 to 24 deg. F. The secondary loop pressure varied from 3.7 to 25 psia, secondary mass flow varied from 1 to 70 lbm/hr, secondary loop pressure drop varied from 4 inH20 to 10 inH20, and secondary loop temperature varied same as jet temperature. The mass flow ratio was in the range of 2 to 14. The results were analyzed and compared with the Hickman and Nuckols and Sexton prediction models. The loss factor in Nuckols and Sexton model was adjusted to match the test results.
Technical Paper

Performance of the Water Recovery System During Phase II of the Lunar-Mars Life Support Test Project

1997-07-01
972417
The recovery of potable water from waste water produced by humans in regenerative life support systems is essential for success of long-duration space missions. The Lunar-Mars Life Support Test Project (LMLSTP) Phase II test was performed to validate candidate technologies to support these missions. The test was conducted in the Crew and Thermal Systems Division (CTSD) Life Support Systems Integration Facility (LSSIF) at Johnson Space Center (JSC). Discussed in this paper are the water recovery system (WRS) results of this test. A crew of 4-persons participated in the test and lived in the LSSIF chamber for a duration of 30-days from June 12 to July 12, 1996. The crew had accommodations for personal hygiene, the air was regenerated for reuse, and the waste water was processed to potable and hygiene quality for reuse by the crew during this period. The waste water consisted of shower, laundry, handwash, urine and humidity condensate.
X