Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Airborne Dust in Space Vehicles and Habitats

2006-07-17
2006-01-2152
Airborne dust, suspended inside a space vehicle or in future celestial habitats, can present a serious threat to crew health if it is not controlled. During some Apollo missions to the moon, lunar dust brought inside the capsule caused eye irritation and breathing difficulty to the crew when they launched from the moon and reacquired “microgravity.” During Shuttle flights reactive and toxic dusts such as lithium hydroxide have created a risk to crew health, and fine particles from combustion events can be especially worrisome. Under nominal spaceflight conditions, airborne dusts and particles tend to be larger than on earth because of the absence of gravity settling. Aboard the ISS, dusts are effectively managed by high efficiency filters, although floating dust in newly-arrived modules can be a nuisance.
Technical Paper

Effect of Local Hand Thermal Insulation on Total and Local Comfort Under Different Levels of Body Heat Deficit

2005-07-11
2005-01-2977
Introduction: There are contradictory opinions regarding the contribution of local hand thermal insulation to support local and total comfort during extravehicular activity (EVA). Instead of a local correction by means of thermal insulation on the periphery of the body to prevent heat dissipation, it may be optimal to prevent heat dissipation from the body core. To examine such a concept, the effects of different insulation levels on the left and right hands on the heat flux and temperature mosaic on the hands was measured. These variables were assessed in relation to the level of heat deficit forming in the core organs and tissues. Methods: Six subjects (4 males, 2 females) were donned in a liquid cooling/warming garment (LCWG) that totally covered the body surface except for the face. Participants wore the Phase VI space gloves including the entire micrometeoroid garment (TMG) on the left hand, and the glove without the TMG on the right hand.
Technical Paper

A Review of Monitoring Technologies for Trace Air Contaminants in the International Space Station

2004-07-19
2004-01-2339
NASA issued a Request For Information (RFI) to identify technologies that might be available to monitor a list of air pollutants in the ISS atmosphere. After NASA received responses to the RFI, an expert panel was assembled to hear presentations from 9 technology proponents. The goal of the panel was to identify technologies that might be suitable for replacement of the current Volatile Organics Analyzer (VOA) within several years. The panelists consisted of 8 experts in analytical chemistry without any links to NASA and 7 people with specific expertise because of their roles in NASA programs. Each technology was scored using a tool that enabled rating of many specific aspects of the technology on a 4-point system. The maturity of the technologies ranged from well-tested instrument packages that had been designed for space applications and were nearly ready for flight to technologies that were untested and speculative in nature.
Technical Paper

The Lithium Hydroxide Management Plan for Removing Carbon Dioxide from the Space Shuttle while Docked to the International Space Station

2003-07-07
2003-01-2491
The Lithium Hydroxide (LiOH) management plan to control carbon dioxide (CO2) for the Shuttle while docked to the International Space Station (ISS) reduces the mass and volume needed to be launched. For missions before Flight UF-1/STS-108, the Shuttle and ISS each removed their own CO2 during the docked time period. To control the CO2 level, the Shuttle used LiOH canisters and the ISS used the Vozdukh or the Carbon Dioxide Removal Assembly (CDRA) with the Vozdukh being the primary ISS device for CO2 removal. Analysis predicted that both the Shuttle and Station atmospheres could be controlled using the Station resources with only the Vozdukh and the CDRA. If the LiOH canisters were not needed for the CO2 control on the Shuttle during the docked periods, then the mass and volume from these LiOH canisters normally launched on the Shuttle could be replaced with other cargo.
Technical Paper

Toxicological Assessment of the International Space Station Atmosphere, Part 2

2001-07-09
2001-01-2396
Space-faring crews must have safe breathing air throughout their missions to ensure adequate performance and good health. Toxicological assessment of air quality depends on the standards that define acceptable air quality, measurements of pollutant levels during the flight, and reports from the crew on their in-flight perceptions of air quality. Air samples from ISS flights 2A.2a, 2A.2b, 3A, and 4A were analyzed for trace pollutants. On average the air during each flight was safe for human respiration. However, there were reports from the crew that they experienced a headache when in certain areas, and strong odors were reported from specific locations of the ISS complex. Inspection of air samples in these locations suggested that several of the solvent-type pollutants (e.g. ethyl acetate, xylenes, and n-butanol) were present in concentrations that would cause a strong odor to be perceived by some individuals.
Technical Paper

Anatomical Modeling Considerations for Calculating Organ Exposures in Space

2000-07-10
2000-01-2412
Typical calculations of radiation exposures in space approximate the composition of the human body by a single material, typically Aluminum or water. A further approximation is made with regard to body size by using a single anatomical model to represent people of all sizes. A comparison of calculations of organ dose and dose-equivalent is presented. Calculations are first performed approximating body materials by water equivalent thickness', and then using a more accurate representation of materials present in the body. In each case of material representation, a further comparison is presented of calculations performed modeling people of different sizes.
Technical Paper

A Study of Fabric Seam Failure under Biaxial Stress Loading

2000-07-10
2000-01-2254
Most of the studies conducted on the design of inflated fabric structures for space applications have focused on types of yarns and coating selection. The design of seams along with materials selection considerations is also crucial to the design of inflatable structures. This paper presents a pilot study of the modes of failure for fabrics with two selected sewn seams under biaxial stress loading. A literature review of sewn seam testing techniques reveals that conventional methods do not accurately simulate the biaxial stresses to which inflated fabrics are subjected. In this study, biaxial stresses are obtained by using a cylindrical pressure testing apparatus developed originally for testing seam design for an inflatable Lunar habitat. The unique features of the test method for sewn seams of fabrics by cylindrical pressure loading are described. Test data is presented, and the sensitivity of the test to changes is also discussed.
X