Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

GaAs/Ge Solar Powered Aircraft, 1999

1999-04-06
1999-01-1372
Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration aircraft. Due to the weight, speed, and altitude constraints imposed on such an aircraft, solar array generated electric power can be a viable alternative to air-breathing engines for certain missions. Development of such an aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) has built a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office.
Technical Paper

GaAs/Ge Solar Powered Aircraft, 1998

1998-04-21
981260
Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration aircraft. Due to the weight, speed, and altitude constraints imposed on such an aircraft, solar array generated electric power can be a viable alternative to air-breathing engines for certain missions. Development, of such an aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) has built a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office.
Technical Paper

Feasibility of Using In-Situ Lunar Soil as a Latent Thermal Energy Storage Media

1994-06-01
941328
An experiment was designed, fabricated and tested at the NASA Lewis Research Center to investigate the concept of using the surface layer of the moon to store thermal energy. The concept includes using the energy stored within the surface as a thermal input to drive a solar dynamic power system. The solar dynamic power system would operate using the suns thermal input during the lunar day and would continue to operate during the lunar night using the thermal energy stored within the cavity. The experiment modeled in a lunar thermal energy storage concept by applying a heat flux to the surface of simulated lunar soil equivalent to what a primary and secondary solar concentrator could produce with a concentration ratio of 2000:1. The experiment was designed to determine if the surface layer of the lunar soil could be melted using the equivalent heat flux from a radiative heating element mounted above the simulated lunar soil.
Technical Paper

Optimization of Armored Spherical Tanks for Storage on the Lunar Surface

1992-08-03
929085
A redundancy strategy for reducing micrometeroid armoring mass is investigated, with application to cryogenic reactant storage for a regenerative fuel cell (RFC) on the lunar surface. In that micrometeoroid environment, the cryogenic fuel must be protected from loss due to tank puncture. The tankage must have a sufficiently high probability of survival over the length of the mission that the probability of system failure due to tank puncture is low compared to the other mission risk factors. Assuming that a single meteoroid penetration can cause a storage tank to lose its contents, two means are available to raise the probability of surviving micrometeoroid attack to the desired level. One can armor the tanks to a thickness sufficient to reduce probability of penetration of any tank to the desired level; or add extra capacity, in the form of spare tanks, that results in survival of a given number out of the ensemble at the desired level.
Technical Paper

Description of the SSF PMAD DC Testbed Control System Data Acquisition Function

1992-08-03
929222
The NASA Lewis Research Center in Cleveland, Ohio has completed the development and integration of a Power Management and Distribution (PMAD) DC Testbed. This testbed is a reduced scale representation of the end to end, sources to loads, Space Station Freedom Electrical Power System (SSF EPS). This unique facility is being used to demonstrate DC power generation and distribution, power management and control, and system operation techniques considered to be prime candidates for the Space Station Freedom. A key capability of the testbed is its ability to be configured to address system level issues in support of critical SSF program design milestones. Electrical power system control and operation issues like source control, source regulation, system fault protection, end-to-end system stability, health monitoring, resource allocation and resource management are being evaluated in the testbed.
Technical Paper

The NASA CSTI High Capacity Power Project

1992-08-03
929312
The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase I of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the CSTI High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems.
Technical Paper

An Overview of General Aviation Propulsion Research Programs at NASA-Lewis Research Center

1981-04-01
810624
This paper presents a brief overview and technical highlights of general aviation (g/a) propulsion research efforts and studies which have been underway at NASA's Lewis Research Center (LeRC) for the past several years. The review covers near-term improvements for current-type piston engines, as well as studies and limited corroborative research on several advanced g/a engine concepts, including diesels, small turboprops and both piston and rotary stratified-charge engines. Also described is basic combustion research, cycle modeling and diagnostic instrumentation work that will be required to make the new engines a reality. The discussion emphasizes the most recently-completed studies and the basic underlying research work, which have not been reported previously.
Technical Paper

Improved Components for Engine Fuel Savings

1980-09-01
801116
NASA is currently involved in the Aircraft Energy Efficiency Program (ACEE) which is directed toward developing technology for more fuel efficient aircraft. As part of this overall program, the Engine Component Improvement (ECI) Project was formulated to address near-term improvements for current engines. One part of this effort is Engine Diagnostics which is directed at investigating the causes for in-service performance deterioration of the CF6 and JT9D high bypass ratio turbofan engines. The other part is Performance Improvement, which is directed at development of component technologies to reduce the fuel consumption of CF6, JT9D and JT8D engines. This paper discusses the Performance Improvement part. Nine of sixteen concepts being developed under the ECI project are now complete and four are in service. The remaining five are being offered to the airlines.
X