Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Trace Contaminant Removal by Atmospheric Pressure Plasma Discharges

2008-06-29
2008-01-2100
A Plasma Air Decontamination System (PADS) is being developed by ORBITEC for trace contaminant control in spacecraft cabin air, based on non-thermal, atmospheric pressure plasma discharges that generate various highly reactive species that can react with and break down trace air contaminants. It uses a simple and modular design, and may be scaled up or down to meet the requirements of different applications. The prototype PADS reactor has successfully demonstrated removal of ammonia and other selected volatile organic carbons from air, including acetone, ethylbenzene, methane, and methylene chloride. It has the potential to replace the existing high-temperature catalytic oxidizers.
Technical Paper

Submerged Electrical Discharges for Water Decontamination and Disinfection

2007-07-09
2007-01-3175
A modular and scalable Dense Medium Plasma Water Purification Reactor was developed, which uses atmospheric-pressure electrical discharges under water to generate highly reactive species to break down organic contaminants and microorganisms. Key benefits of this novel technology include: (i) extremely high efficiency in both decontamination and disinfection; (ii) operating continuously at ambient temperature and pressure; (iii) reducing demands on the containment vessel; and (iv) requiring no consumables. This plasma based technology was developed to replace the catalytic reactor being used in the planned International Space Station Water Processor Assembly.
Technical Paper

Protecting the ISS Crew from Biological Hazards: The Advanced Animal Habitat (AAH) Containment Approach

2005-07-11
2005-01-2956
The Advanced Animal Habitat (AAH) represents the next generation of Space Station based animal research facilities. Care has been taken to protect the ISS crew from exposure to the hazardous biological materials contained within the AAH. These materials include rat feces, urine, dander, and odor. The approach to containing biological materials relies on collecting the solid and liquid waste, providing physical barriers between the waste and the crew environment, maintaining negative pressure within the specimen environment with respect to the crew environment, and providing odor filtration of air exchanged between the specimen and crew environments. These protections will be in place during all modes of AAH operation.
Technical Paper

Collaborative 3D Training: From Astronauts to Automotive Techs

2004-07-19
2004-01-2593
As spaceflight hardware becomes increasingly complex, ever greater demands are placed on astronauts’ training capacity. In addition, astronauts are being asked to conduct unplanned operations with minimal or no training, and long duration operations preclude the ability to thoroughly train before flight on many operations. This trend will be more pronounced as we approach remote operations on the moon and Mars in the Exploration era. In response, Orbital Technologies Corporation has developed an interactive and collaborative 3D simulation training solution for payloads and International Space Station systems. This portable web-based training system provides flexible, efficient and effective pre-flight, real-time and operational training support. Unlike virtual reality systems, this next generation simulation can also be used for remote or just-in-time procedural training between ground-based experts and astronauts in space due to its low file size and collaboration capability.
X