Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Interfacing a General Purpose Fluid Network Flow Program with the SINDA/G Thermal Analysis Program

1999-07-12
1999-01-2162
A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program SINDA/G. The flow code, the Generalized Fluid System Simulation Program (GFSSP), is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasi-steady (unsteady solid, steady fluid) conjugate heat transfer modeling.
Technical Paper

Development of the Standard Interface Glovebox (SIGB) for use on Shuttle, MIR, and International Space Station

1997-07-01
972310
An innovative design that meets both Shuttle and Space Station requirements for a user-friendly, volume-efficient, portable glovebox system has been developed at Ames Research Center (ARC). The Standard Interface Glovebox (SIGB) has been designed as a two Middeck locker-sized system that mounts in a Middeck Rack Structure (MRS) or in any rack using the Standard Interface Rack (SIR) rail spacing. The MRS provides structural support for the SIGB during all aspects of the mission and is an interface consistent with NASA's desire for commonality of mechanical interfaces, allowing the SIGB to be flown on essentially any manned space platform. The SIGB provides an enclosed work volume which operates at negative pressure relative to ambient, as well as excellent lighting and ample work volume for anticipated life sciences-related experiment operations inflight.
Technical Paper

Mach Flow Angularity Probes for Scramjet Engine Flow Path Diagnostics

1993-09-01
932551
Mach-flow angularity probes were developed for use in scramjet flow path probe rakes. Prototype probes were fabricated to demonstrate the assembly processes (numerical control machining, furnace brazing, and electron beam welding). Tests of prototype probes confirmed the thermal durability margins and life cycle. Selected probes were calibrated in air at Mach numbers from 1.75 to 6.0. Acceptance criteria for the production probes stressed thermal durability and pressure (and, consequently, Mach number) measurement quality. This new water-cooled MFA probe has 0.397-cm shaft diameter and is capable of withstanding heat fluxes of 2.724 kW/cm2.
Technical Paper

Dynamic Isotope Power System Design Considerations for Human Exploration of the Moon and Mars

1992-08-03
929483
To support the Space Exploration Initiative, studies were performed to investigate and characterize Dynamic Isotope Power System (DIPS) alternatives for the surface mission elements associated with a lunar base and subsequent manned Mars expedition. A key part of this characterization was to determine how the mission environment affects system design. The impact of shielding to provide astronaut protection from power system radiation was also examined. Impacts of mission environment and shielding were examined for two representative DIPS types (closed Brayton cycle and Stirling cycle converters). Mission environmental factors included: (1) thermal background; (2) dust and atmospheric corrosion; (3) meteoroid damage; and (4) presence of an atmosphere on Mars. Physical effects of these factors on thermal power systems were identified and their parametric range associated with the mission and mission environment were determined.
Technical Paper

NASA Lewis Stirling SPRE Testing and Analysis with Reduced Number of Cooler Tubes

1992-08-03
929396
Free-piston Stirling power converters are a candidate for high capacity space power applications. The Space Power Research Engine (SPRE), a free-piston Stirling engine coupled with a linear alternator is being tested at the NASA Lewis Research Center in support of the Civil Space Technology Initiative. The SPRE is used as a test bed for evaluating converter modifications which have the potential to improve converter performance and for validating computer code predictions. Reducing the number of cooler tubes on the SPRE has been identified as a modification with the potential to significantly improve power and efficiency. This paper describes experimental tests designed to investigate the effects of reducing the number of cooler tubes on converter power, efficiency and dynamics. Presented are test results from the converter operating with a reduced number of cooler tubes and comparisons between this data and both baseline test data and computer code predictions.
X