Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Structural and Radiation Shielding Properties of Non-parasitic, Multi-functional Microporous Carbon for Aerospace Applications

2007-07-09
2007-01-3111
AFR, Inc. is developing a multifunctional Carbon material that, in addition to excellent radiation shielding characteristics, is appropriate for certain energy storage applications. As an excellent Hydrogen gas sorbent, it increases the usable storage capacity of a gas cylinder by ∼25% at 3500 PSI and by ∼150% at 500 PSI. Our ongoing NASA Langley funded study shows that when a sorbent-filled tank is charged with hydrogen, it provides shielding superior to polyethylene against most types of ionizing particles. Even as hydrogen is consumed, the carbon and tank ensure that significant radiation shielding capability is maintained. In addition to storing hydrogen, the carbon material also displays considerable strength. In this paper, we explore some of its mechanical properties that show this material is very versatile and highly multifunctional.
Technical Paper

Radiation Shielding and Mechanical Strength Evaluations of Non-parasitic, Multi-functional Microporous Carbon for Aerospace Applications

2006-07-17
2006-01-2104
AFR, Inc. is developing a multifunctional Carbon material that, in addition to excellent radiation shielding characteristics, is appropriate for certain energy storage applications. As an excellent Hydrogen gas sorbent, it increases the usable storage capacity of a gas cylinder by ∼25% at 3500 PSI and by ∼150% at 500 PSI. Our ongoing NASA Langley funded study shows that when a sorbent-filled tank is charged with hydrogen, it provides shielding superior to polyethylene against most types of ionizing particles. Even as hydrogen is consumed, the carbon and tank ensure that significant radiation shielding capability is maintained. Vastly improved radiation shielding is a clear requirement for a potential manned mission to Mars or a long-duration base on the surface of the Moon. However, current shielding technologies are predicated upon systems dedicated solely to the task of shielding.
Technical Paper

Nonparasitic, Multifunctional Spacecraft Radiation Shielding

2004-07-19
2004-01-2279
AFR, Inc. is developing a multifunctional Carbon material that, in addition to excellent radiation shielding characteristics, is appropriate for certain energy storage applications. As an excellent Hydrogen gas sorbent, it increases the usable storage capacity of a gas cylinder by ~25% at 3500 PSI and by ~150% at 500 PSI. Our recent NASA-Langley SBIR study shows that when a sorbent-filled tank is charged with hydrogen, it provides shielding superior to polyethylene against most types of ionizing particles. Even as hydrogen is consumed, the carbon and tank ensure that significant radiation shielding capability is maintained. Vastly improved radiation shielding is a clear requirement for a potential manned mission to Mars or a long-duration base on the surface of the Moon. However, current shielding technologies are predicated upon systems dedicated solely to the task of shielding.
Technical Paper

An Evaluation of a Prototype Dry Pyrolysis System for Destruction of Solid Wastes

2004-07-19
2004-01-2379
Pyrolysis is a technology that can be used on future space missions to convert wastes to an inert char, water, and gases. The gases can be easily vented overboard on near term missions. For far term missions the gases could be directed to a combustor or recycled. The conversion to char and gases as well as the absence of a need for resupply materials are advantages of pyrolysis. A major disadvantage of pyrolysis is that it can produce tars that are difficult to handle and can cause plugging of the processing hardware. By controlling the heating rate of primary pyrolysis, the secondary (cracking) bed temperature, and residence time, it is possible that tar formation can be minimized for most biomass materials. This paper describes an experimental evaluation of two versions of pyrolysis reactors that were delivered to the NASA Ames Research Center (ARC) as the end products of a Phase II and a Phase III Small Business Innovation Research (SBIR) project.
X