Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
Technical Paper

Advanced squeak and rattle noise prediction for vehicle interior development – numerical simulation and experimental validation

2024-06-12
2024-01-2925
Squeak and rattle (SAR) noise audible inside a passenger car causes the product quality perceived by the customer to deteriorate. The consequences are high warranty costs and a loss in brand reputation for the vehicle manufacturer in the long run. Therefore, SAR noise must be prevented. This research shows the application and experimental validation of a novel method to predict SAR noise on an actual vehicle interior component. The novel method is based on non-linear theories in the frequency domain. It uses the harmonic balance method in combination with the alternating frequency/time domain method to solve the governing dynamic equations. The simulation approach is part of a process for SAR noise prediction in vehicle interior development presented herein. In the first step, a state-of-the-art linear frequency-domain simulation estimates an empirical risk index for SAR noise emission. Critical spots prone to SAR noise generation are located and ranked.
Technical Paper

Choosing the Best Lithium Battery Technology in the Hybridization of Ultralight Aircraft

2024-06-12
2024-37-0017
Many research centers and companies in general aviation have been devoting efforts to the electrification of propulsive plants to reduce environmental impact and/or increase safety. Even if the final goal is the elimination of fossil fuels, the limitations of today's battery in terms of energy and power densities suggest the adoption of hybrid-electric solutions that combine the advantages of conventional and electric propulsive systems, namely reduced fuel consumption, high peak power, and increased safety deriving from redundancy. Today, lithium batteries are the best commercial option for the electrification of all means of transportation. However, lithium batteries are a family of technologies that presents a variety of specifications in terms of gravimetric and volumetric energy density, discharge and charge currents, safety, and cost.
Technical Paper

Analysis of the Mechanism by Which Spline Pitch Errors Affect Powertrain Vibration

2024-06-12
2024-01-2910
As environmental concerns have taken the spotlight, electrified powertrains are rapidly being integrated into vehicles across various brands, boosting their market share. With the increasing adoption of electric vehicles, market demands are growing, and competition is intensifying. This trend has led to stricter standards for noise and vibration as well. To meet these requirements, it is necessary to not only address the inherent noise and vibration sources in electric powertrains, primarily from motors and gearboxes, but also to analyze the impact of the spline power transmission structure on system vibration and noise. Especially crucial is the consideration of manufacturing discrepancies, such as pitch errors in splines, which various studies have highlighted as contributors to noise and vibration in electric powertrains. This paper focuses on comparing and analyzing the influence of spline pitch errors on two layout configurations of motor and gearbox spline coupling structures.
Technical Paper

Metrics based design of electromechanical coupled reduced order model of an electric powertrain for NVH assessment

2024-06-12
2024-01-2913
Electric vehicles offer cleaner transportation with lower emissions, thus their increased popularity. Although, electric powertrains contribute to quieter vehicles, the shift from internal combustion engines to electric powertrains presents new Noise, Vibration, and Harshness challenges. Unlike traditional engines, electric powertrains produce distinctive tonal noise, notably from motor whistles and gear whine. These tonal components have frequency content, sometimes above 10 kHz. Furthermore, the housing of the powertrain is the interface between the excitation from the driveline via the bearings and the radiated noise (NVH). Acoustic features of the radiated noise can be predicted by utilising the transmitted forces from the bearings. Due to tonal components at higher frequencies and dense modal content, full flexible multibody dynamics simulations are computationally expensive.
Technical Paper

Buckling and Post-Buckling Response of 3D Printed Cylindrical Shell with Circular Cutout Under Axial Compression

2024-06-01
2024-26-0418
Despite being ubiquitous elements in aerospace structures, thin cylindrical shells’ catastrophic buckling response under axial compression has still remained an enigma. The recent advancements in theoretical and numerical studies aided in realising the role of localisation in shell buckling. However, the buckling being instantaneous made it unfeasible for the experimental observations to corroborate the numerical results. This necessitates high-fidelity shell buckling experiments using full-filed measurement techniques. Cut-outs are deliberate and inevitable geometrical imperfections in actual structures that could dictate the buckling response. Additive manufacturing makes it feasible to fabricate shells with tailored imperfections and study various conceivable designs.
Technical Paper

Knockdown Factor Estimation of Stiffened Cylinders under Combined Loads - A Numerical Study

2024-06-01
2024-26-0417
Airframe section of rockets, missiles and launch vehicles are typically cylindrical in shape. The cylindrical shell is subjected to high axial load and an external pressure during its operation. The design of cylinders subjected to such loads is generally found to be critical in buckling. To minimize the weight of cylinders, it is typically stiffened with rings and stringers on the inner diameter to increase the buckling load factor. Conventionally the buckling load estimated by analytical or numerical means is multiplied by an empirical factor generally called Knockdown factor (kdf) to get the critical buckling load. This factor is considered to account for the variation between theory and experiment and is specified by handbooks or codes. In aerospace industry, NASA SP 8007 is commonly followed and it specifies the kdf as a lower bound fit curve for experimental data .
Technical Paper

Analysis for Effect of Angle of Attack on Coefficient of Lift of Wing Structure

2024-06-01
2024-26-0450
Dimensional optimization has always been a time consuming process, especially for aerodynamic bodies, requiring much tuning of dimensions and testing for each sample. Aerodynamic auxiliaries, especially wings, are design dependent on the primary model attached, as they influence the amount of lift or reduction in drag which is beneficial to the model. In this study CFD analysis is performed to obtain pressure counter of wings. For a wing, the angle of attack is essential in creating proper splits to incoming winds, even under high velocities with larger distances from the separation point. In the case of a group of wings, each wing is then mentioned as a wing element, and each wing is strategically positioned behind the previous wing in terms of its vertical height and its self-angle of attack to create maximum lift. At the same time, its drag remains variable to its shape ultimately maximizing the C L /C D ratio.
Technical Paper

Numerical Investigation of Aerodynamic Characteristics on a Blunt Cone Model at Various Angles of Attack under Hypersonic Flow Regimes

2024-06-01
2024-26-0446
The study of aerodynamic forces in hypersonic environments is important to ensure the safety and proper functioning of aerospace vehicles. These forces vary with the angle of attack (AOA) and there exists an optimum angle of attack where the ratio of the lift to drag force is maximum. In this paper, computational analysis has been performed on a blunt cone model to study the aerodynamic characteristics when hypersonic flow is allowed to pass through the model. The flow has a Mach number of 8.44 and the angle of attack is varied from 0º to 20º. The commercial CFD solver ANSYS FLUENT is used for the computational analysis and the mesh is generated using the ICEM CFD module of ANSYS. Air is selected as the working fluid. The simulation is carried out for a time duration of 1.2 ms where it reaches a steady state and the lift and drag forces and coefficients are estimated. The pressure, temperature, and velocity contours at different angles of attack are also observed.
Technical Paper

Design and Development of Terminal Velocity Measurement System for Descending Modules

2024-06-01
2024-26-0438
Gaganyaan programme is India's prestigious human space exploration endeavour. During the re-entry of the spacecraft, achieving the minimum terminal velocity is paramount to ensure the crew's safety upon landing. Therefore, acquiring accurate in-flight velocity data is essential for comprehensively understanding the landing dynamics and facilitating post-flight data analysis and validation. Moreover, terminal velocity plays a pivotal role in the qualification of parachute systems during platform-drop tests where the objective is to minimize the terminal velocity for safe impact. Terminal velocity also serves as a critical design parameter for the crew seat attenuation system. In addition to terminal velocity, it is equally necessary to characterize the horizontal velocities acting on the decelerating body due to various factors such as parachute sway and wind drift. This data also plays a central role in refining our systems for future enhancements.
Technical Paper

Assessing the Structural Feasibility and Recyclability of Flax/PLA Bio-Composites for Enhanced Sustainability

2024-06-01
2024-26-0407
Bio-composites have gained significant attention within the aerospace industry due to their potential as a sustainable solution that addresses the demand for lightweight materials with reduced environmental impact. These materials blend natural fibers sourced from renewable origins, such as plant-based fibers, with polymer matrices to fabricate composite materials that exhibit desirable mechanical properties and environmental friendliness. The aerospace sector's growing interest in bio-composites originates from those composites’ capacity to mitigate the industry's carbon footprint and decrease dependence on finite resources. This study aims to investigate the suitability of utilizing plant derived flax fabric/PLA (polylactic acid) matrix-based bio-composites in aerospace applications, as well as the recyclability potential of these composites in the circular manufacturing economy.
Technical Paper

Study of Different Designs of Chevrons for Effective Noise Reduction in Jet Engines

2024-06-01
2024-26-0408
Due to their remarkable efficiency and efficacy, chevrons have emerged as a prominent subject of investigation within the Aviation Industry, primarily aimed at mitigating aircraft noise levels and achieving a quieter airborne experience. Extensive research has identified the engine as the primary source of noise in aircraft, prompting the implementation of chevrons within the engine nozzle. These chevrons function by inducing streamwise vortices into the shear layer, thereby augmenting the mixing process and resulting in a noteworthy reduction of low-frequency noise emissions. Our paper aims to conduct a comparative computational analysis encompassing seven distinct chevron designs and a design without chevrons. The size and configuration of the chevrons with the jet engine nacelle were designed to match the nozzle diameter of 100.48mm and 56.76mm, utilizing the advanced SolidWorks CAD modeling software.
Technical Paper

Energy Consumption in Lightweight Electric Aircraft

2024-06-01
2024-26-0403
Electric aircraft have emerged as a promising solution for sustainable aviation, aiming to reduce greenhouse gas emissions and noise pollution. Efficiently estimating and optimizing energy consumption in these aircraft is crucial for enhancing their design, operation, and overall performance. This paper presents a novel framework for analyzing and modeling energy consumption patterns in lightweight electric aircraft. A mathematical model is developed, encompassing key factors such as aircraft weight, velocity, wing area, air density, coefficient of drag, and battery efficiency. This model estimates the total energy consumption during steady-level flight, considering the power requirements for propulsion, electrical systems, and auxiliary loads. The model serves as the foundation for analyzing energy consumption patterns and optimizing the performance of lightweight electric aircraft.
Technical Paper

Analytical and Experimental Evaluation of Seal Drag using Variety of Different Fluids

2024-06-01
2024-26-0423
The present study discusses about the determination of the Seal drag force in the application where elastomeric seal is used with metallic interface in the presence of different fluids. An analytical model was constructed to predict the seal drag force and experimental test was performed to check the fidelity of the analytical model. A Design of Experiment (DoE) was utilized to perform experimental test considering different factors affecting the Seal drag force. Statistical tools such as Test for Equal Variances and One way Analysis of Variance (ANOVA) were used to draw inferences for population based on samples tested in the DoE test. It was observed that Glycol based fluids lead to lubricant wash off resulting into increased seal drag force. Additionally, non-lubricated seals tend to show higher seal drag force as compared to lubricated seals. Keywords: Seal Drag, DoE, ANOVA
Technical Paper

Automatic Maneuver Detection in Flight Data using Wavelet Transform and Deep Learning Algorithms

2024-06-01
2024-26-0462
The evaluation of aircraft characteristics through flight test maneuvers is fundamental to aviation safety and understanding flight attributes. This research project proposes a comprehensive methodology to detect and analyze aircraft maneuvers using full flight data, combining signal processing and machine learning techniques. Leveraging the Wavelet Transform, we unveil intricate temporal details within flight data, uncovering critical time-frequency insights essential for aviation safety. The integration of Long Short-Term Memory (LSTM) models enhances our ability to capture temporal dependencies, surpassing the capabilities of machine learning in isolation. These extracted maneuvers not only aid in safety but also find practical applications in system identification, air-data calibration, and performance analysis, significantly reducing pre-processing time for analysts.
Technical Paper

Post Flight Simulation of Dynamic Responses at the Satellite Interface of a Typical Launch Vehicle During Solid Motor Ignition

2024-06-01
2024-26-0461
Launch vehicle structures in course of its flight will be subjected to dynamic forces over a range of frequencies up to 2000 Hz. These loads can be steady, transient or random in nature. The dynamic excitations like aerodynamic gust, motor oscillations and transients, sudden application of control force are capable of exciting the low frequency structural modes and cause significant responses at the interface of launch vehicle and satellite. The satellite interface responses to these low frequency excitations are estimated through Coupled Load Analysis (CLA). The analysis plays a crucial role in mission as the satellite design loads and Sine vibration test levels are defined based on this. The perquisite of CLA is to predict the responses with considerable accuracy so that the design loads are not exceeded in the flight. CLA validation is possible by simulating the flight experienced responses through the analysis.
Technical Paper

Hybrid Cooling System for Thermal Management in Electric Aerial Vehicles

2024-06-01
2024-26-0468
Continuous improvements and innovations towards sustainability in the aviation industry has brought interest in electrified aviation. Electric aircrafts have short missions in which the temporal variability of thermal loads are high. Lithium-ion (Li-ion) batteries have emerged as prominent power source candidate for electric aircrafts and Urban Air Mobility (UAM). UAMs and Electric aircrafts have large battery packs with battery capacity ranging in hundreds or thousands of kWh. If the battery is exposed to temperatures outside the optimum range, the life and the performance of the battery reduces drastically. Hence, it is crucial to have a Thermal Management System (TMS) which would reduce the heat load on battery in addition to cabin, and machinery thermal loads. Thermal management can be done through active or passive cooling. Adding a passive cooling system like Phase Change Material (PCM) to the TMS reduces the design maximum thermal loads.
Technical Paper

Fault Detection in Machine Bearings using Deep Learning - LSTM

2024-06-01
2024-26-0473
In today's industrial sphere, machines are the key supporting various sectors and their operations. Over time, due to extensive usage, these machines undergo wear and tear, introducing subtle yet consequential faults that may go unnoticed. Given the pervasive dependence on machinery, the early and precise detection of these faults becomes a critical necessity. Detecting faults at an early stage not only prevents expensive downtimes but also significantly improves operational efficiency and safety standards. This research focuses on addressing this crucial need by proposing an effective system for condition monitoring and fault detection, leveraging the capabilities of advanced deep learning techniques. The study delves into the application of five diverse deep learning models—LSTM, Deep LSTM, Bi LSTM, GRU, and 1DCNN—in the context of fault detection in bearings using accelerometer data. Accelerometer data is instrumental in capturing vital vibrations within the machinery.
Technical Paper

Using Generative Models to Synthesize Multi-Component Asset Images for Training Defect Inspection Models

2024-06-01
2024-26-0474
Industries have been increasingly adopting AI based computer vision models for automated asset defect inspection. A challenging aspect within this domain is the inspection of composite assets consisting of multiple components, each of which is an object of interest for inspection, with its own structural variations, defect types and signatures. Training vision models for such an inspection process involves numerous challenges around data acquisition such as insufficient volume, inconsistent positioning, poor quality and imbalance owing to inadequate image samples of infrequently occurring defects. Approaches to augmenting the dataset through Standard Data Augmentation (SDA) methods (image transformations such as flipping, rotation, contrast adjustment, etc.) have had limited success. When dealing with images of such composite assets, it is challenging to correct the data imbalance at the component level using image transformations as they apply to all the components within an image.
Technical Paper

Formal Technique for Fault Detection and Identification of Control Intensive Application of Stall Warning System using System Theoretic Process Analysis

2024-06-01
2024-26-0471
Faults if not detected and processed will create catastrophe in closed loop system for safety critical applications in automotive, space, medical, nuclear, and aerospace domains. In aerospace applications such as stall warning and protection/prevention system (SWPS), algorithms detect stall condition and provide protection by deploying the elevator stick pusher. Failure to detect and prevent stall leads to loss of lives and aircraft. Traditional Functional Hazard and Fault Tree analyses are inadequate to capture all failures due to the complex hardware-software interactions for stall warning and protection system. Hence, an improved methodology for failure detection and identification is proposed. This paper discusses a hybrid formal method and model-based technique using STPA to identify and diagnose faults and provide monitors to process the identified faults to ensure robust design of the indigenous stall warning and protection system (SWPS).
X