Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Selective Laser Melting Based Additive Manufacturing Process Diagnostics using In-line Monitoring Technique and Laser-Material Interaction Model

2024-06-01
2024-26-0420
Selective Laser Melting (SLM) has gained widespread usage in aviation, aerospace, and die manufacturing due to its exceptional capacity for producing intricate metal components of highly complex geometries. Nevertheless, the instability inherent in the SLM process frequently results in irregularities in the quality of the fabricated components. As a result, this hinders the continuous progress and wider acceptance of SLM technology. Addressing these challenges, in-process quality control strategies during SLM operations have emerged as effective remedies for mitigating the quality inconsistencies found in the final components. This study focuses on utilizing optical emission spectroscopy and IR thermography to continuously monitor and analyze the SLM process within the powder bed, with the aim of strengthening process control and minimizing defects.
Technical Paper

Enhancing Mechanical Behavior of As-Built Polyamide 6+Glass Fiber Produced with Fused Filament Fabrication via Varying Infill Pattern

2024-03-15
2024-01-5035
Additive manufacturing is currently being investigated for the production of components aiming for near net shape. The presence of chopped glass fibers with PA6 increases the melt viscosity and also changes the coefficients of thermal expansion and increase the heat resistance. The great dimensional stability obtained with the fusion of the PA6 with the fiber results in an extremely durable material even in adverse environments for many other materials used in 3D printing. PA6 is a material oriented for users who need to make structural parts and exposed to high mechanical stresses. The impact, test tensile, and flexural results for as-built PA6 with various infill patterns, including grid, triangle, trihexagon, and cubic, are tested.
Technical Paper

Gantry Horizontal Slug Riveting System

2024-03-05
2024-01-1924
Previously given Paper 09ATC-0232 delivered at the SAE Aerotech conference in Seattle in 2009 reports on the E6000 machine installing slug rivets with the EMR. Paper 2015-01-2491given at the SAE conference in Seattle in 2015 reports on index head rivets being installed with screw driven squeeze process. This paper reports on the screw driven squeeze process installing unheaded slug rivet which is a more complex process. We also report on improvements to the fixture automation.
Technical Paper

Implementation of Long Assembly Drills for 777X Flap Carriers

2024-03-05
2024-01-1923
Large diameter, tightly toleranced fastener patterns are commonplace in aerospace structures. Satisfactory generation of these holes is often challenging and can be further complicated by difficult or obstructed access. Bespoke tooling and drill jigs are typically used in conjunction with power feed units leading to a manual, inflexible, and expensive manufacturing process. For 777X flap production, Boeing and Electroimpact collaborated to create a novel, automated solution to generate the fastener holes for the main carrier fitting attachment pattern. Existing robotic automation used for skin to substructure assembly was modified to utilize extended length (up to 635mm), bearing-supported drill bar sub-assemblies. These Long Assembly Drills (LADs) had to be easily attached and detached by one operator, interface with the existing spindle(s), supply cutting lubricant, extract swarf on demand, and include a means for automatically locating datum features.
Technical Paper

Investigation of Mechanical Properties and Weld nugget Characteristics of Thermoplastics by Using Friction Stir Welding with Heat Assisted Induction Coil

2024-03-05
2024-01-1943
Friction stir welding (FSW) is a method of welding that creates a weld trail by pressing a non-consumable rotating tool with a profiled pin on the adjacent surfaces while moving transversely along the welding direction. The method was initially used with metals and alloys, but more recently, thermoplastic polymers have also been included in its application. Investigations on FSW of thermoplastic polymers made of nylon and High-density polythene (HDPE) are presented here. Weld characteristics that are like those of the base materials are attempted to be achieved. Because of their unique nature and thermal conductivity, thermoplastics FSW differs from that of metals. The use of thermoplastic materials with conventional FSW procedures presents numerous difficulties and is currently ineffective. On the weld characteristics of nylon and HDPE, statistical methods were utilized to study the impact of temperature, rotational speed, and transverse speed.
Technical Paper

Prevention of Operational Errors in Semi-Automatic Riveters by Machine Vision Systems Using Deep Learning

2024-03-05
2024-01-1944
This paper reports the development of an operation support system for production equipment using image processing with deep learning. Semi-automatic riveters are used to attach small parts to skin panels, and they involve manual positioning followed by automated drilling and fastening. The operator watches a monitor showing the processing area, and two types of failure may arise because of human error. First, the operator should locate the correct position on the skin panel by looking at markers painted thereon but may mistakenly cause the equipment to drill at an incorrect position. Second, the operator should prevent the equipment from fastening if they see chips around a hole after drilling but may overlook the chips; chips remaining around a drilled hole may cause the fastener to be inserted into the hole and fastened at an angle, which can result in the whole panel having to be scrapped.
Technical Paper

Investigation on Mechanical Properties of ER70S-6 Copper-Coated Steel Wire Sample Produced by Wire Arc Additive Manufacturing (WAAM)

2024-02-23
2023-01-5105
Wire arc additive manufacturing technology has become a promising alternative technology to high-volume metal deposition in many manufacturing industries like aerospace and automotive due to arc stability, long process cycle time, and formability. In this work, the Fanuc arc mate robot forms a single-pass, single-layer structure with a 1.2 mm diameter wire of copper-coated steel. Pure Argon gas is used as a shielding gas to protect the weld from oxidation. Different welding speed is carried out to analyze the bead thickness and height. Current and voltage as a heat input with optimal welding speed, a 10 kg straight wall is built with an operative building rate of 3.94 kg/h. The Rockwell hardness test is used to determine the hardness of the material, and it is discovered that it is 80 HRB. The tensile test is performed to determine the tensile strength and yield strength of the component; the measured values are 483.88 N/mm2 and 342.156 N/mm2, respectively.
Technical Paper

Multiuso Faltbar Wagen: A Multipurpose Foldable Trolley Designed for Efficiency and Ergonomics

2024-02-23
2023-01-5118
Efficient transportation for carrying heavy loads is a common challenge across various applications, from supermarkets to industrial purposes. Conventional trolleys often fall short when loaded with heavy cargo, resulting in increased exertion and diminished productivity. Moreover, these challenges can adversely affect posture and lumbar spine health, especially for elder people and persons with cervical problems. There is a need for more user-friendly, ergonomic, and space-efficient solutions. This project addresses these challenges through an innovative design that encompasses various aspects of trolley functionality, including the study of comfort, wheel selection, and material considerations, drawing from ergonomic research. Multiple methods are employed to optimize the trolley’s dimensions to improve its overall performance. The trolley’s design features a collapsible basket for the transport of smaller-sized items and a base frame for larger goods and luggage.
Technical Paper

Effect of Post Weld Heat Treatment on Notch Sensitivity Ratio of Electron Beam Welded AA2024 Aluminum Alloy Joints

2024-02-23
2023-01-5142
Aluminum alloy AA2024 stands out as a widely utilized age-hardening alloy in aircraft applications worldwide. Despite its superior weldability in comparison to its 6000-series counterparts, AA2024 still reveals vulnerability in the welded joint. Specifically, in the T6 condition, the joint strength is only about 40% of the strength exhibited by the base metal. Faced with this challenge, design engineers often resort to selecting thicker base metal plates due to notable disparities in strength values, particularly concerning yield strength. AA2024 alloy is welded using low heat input electron beam welding. This weld is eliminated all demerits in other fusion welding process. However, heat affected zone is always a weaker region in all the fusion welding process. Post weld heat treatment process, namely, solution treatment and artificial ageing was performed to dimmish the width of weaker region.
Technical Paper

Application of Desirability Approach to Determine Optimal Turning Parameters

2024-02-20
2024-01-5022
Aluminum alloys are employed in agricultural equipment, aerospace sectors, medical instruments, machinery, automobiles, etc. due to their physical and mechanical characteristics. The geometrical shape and size of the parts are modified in turning operation by using a single-point cutting tool. A356 aluminum alloy is widely used in various engineering sectors, hence there is a necessity to produce A-356 components with quality. The inappropriate cutting parameters used in turning operation entail high production costs and reduce tool life. Box–Behnken design (BBD) based on response surface methodology (RSM) was used to design the experiments such that the experiment trials were conducted by varying cutting parameters like N-spindle speed (rpm), f-feed rate (mm/rev), and d-depth of cut (mm). The multi-objective responses, such as surface roughness (SR) and metal removal rate (MRR) were analyzed with the desirability method.
Technical Paper

Statistical Process Control and Analysis on the Water Content Measurements in NASA Glenn’s Icing Research Tunnel

2023-06-15
2023-01-1413
The Icing Research Tunnel at NASA Glenn follows the recommended practice for calibration outlined in SAE’s ARP5905. The calibration team has followed the schedule of a full calibration every five years with a check calibration done every six months following. The liquid water content of the IRT has maintained stability within the stated specifications of variation within +/- 10% of the curve fit equation generated from calibration data. Using past measurements and data trends, IRT characterization engineers wanted to develop methods for the ability to know when data were not within variation. Trends can be observed in the liquid water content measurement process by constructing statistical process control charts. This paper describes data processing procedures for the Multi-Element Sensor in the IRT, including collision efficiency corrections, canonical correlation analysis, process for rejection of data, and construction of control charts.
Research Report

Decarbonized Fuel Options for Civil Aviation

2023-06-13
EPR2023012
Drop-in replacement biofuels and electrofuels can provide net-zero CO2 emissions with dramatic reductions in contrail formation. Biofuels must transition to second-generation cellulosic feedstocks while improving land and soil management. Electrofuels, or "e-fuels,” require aggressive cost reduction in hydrogen production, carbon capture, and fuel synthesis. Hydrogen has great potential for energy efficiency, cost reduction, and emissions reduction; however, its low density (even in liquid form) combined with it’s extremely low boiling temperature mean that bulky spherical tanks will consume considerable fuselage volume. Still, emerging direct-kerosene fuel cells may ultimately provide a superior zero-emission, energy-dense solution. Decarbonized Power Options for Civil Aviation discusses the current challenges with these power options and explores the economic incentives and levers vital to decarbonization.
Research Report

Process Control for Defect Mitigation in Laser Powder Bed Fusion Additive Manufacturing

2023-05-15
EPR2023011
Success in metal additive manufacturing (AM) relies on the optimization of a large set of process parameters to achieve materials whose properties and performance meet design and safety requirements. Despite continuous improvements in the process over the years, the quality of AM parts remains a major concern for manufacturers. Today, researchers are starting to move from discrete geometry-dependent build parameters to continuously variable or dynamically changing parameters that are geometry- and scan-path aware. This approach has become known as “feedforward control.” Process Control for Defect Mitigation in Laser Powder Bed Fusion Additive Manufacturing discusses the origins of feedforward control, its early implementations in AM, the current state of the art, and a path forward to its broader adoption. Click here to access the full SAE EDGETM Research Report portfolio.
Technical Paper

Capacity Modelling and Measurement for Smart Elastic Manufacturing Systems

2023-03-07
2023-01-0997
Aerospace manufacturing is improving its productivity and growth by expanding its capacity for production by investing in new tools and more equipment to provide additional capacity and flexibility in the face of widespread supply disruptions and unpredictable demand. However, the cost of such measures can result in increased unit costs. Alternatively, productivity and quality can be improved by utilizing available resources better to reach optimal performance and react to emerging disruptions and changes. Elastic Manufacturing is a new paradigm that aims to change the response behavior of firms to meet sudden market demands based on automated analysis of the utilization of the available resources, and autonomous allocation of capacity to use resources in the most efficient manner. Through digitalization of the shopfloor, streaming data from equipment enables companies to identify areas for improvement and boost the efficiency without large capital expenditure.
Technical Paper

Modernization of Equipment in Aerospace Nondestructive Inspection

2023-03-07
2023-01-1007
Equipment used in aerospace non-destructive inspection presents opportunity for modernization. Many inspection cells in production operate using a widely available control system software that is suitable for most inspection applications with minimal customization. The size and complex geometry of airframe components demand more application-specific system design to ensure the reliability and cycle time required for an aerospace production schedule. Ordinary inspection systems require manual teaching for program generation and lack datum-finding systems required to rerun programs without modification. Integration of offline programming software and machine vision instruments can save inspection technicians hours or shifts per part by eliminating the need for program retraining due to variation in part delivery position. Modernized inspection cells will reduce labor burden on technicians and provide reliable cycle time information to production planners.
Journal Article

Joining of Nylon Using Friction Stir Welding (FSW) Techniques

2023-03-07
2023-01-0994
The Friction Stir Welding FSW process, polymeric materials respond differently than metallic materials. In addition, the same tool design concept is not able to produce good surface quality with strong welds. Because the welding parameter is so important in this procedure the key The goal of this effort was to construct a novel welding tool that could produce reliable seams for all types of polymers, independent of their configurations, without the use of an additional heat source. The study initially concentrated on the development of the tool and the optimization of the welding parameters. Before arriving at the final tool design, which was able to produce more frictional heat and have superior surface polish, various tools were conceived, produced, and tested. Statistical methods were used to optimize the welding procedures, and numerous mechanical tests were carried out to determine the weld strength.
Journal Article

Evolution of Mobile Robotic Manufacturing Systems at Spirit AeroSystems

2023-03-07
2023-01-0996
Efforts toward the mechanization of aircraft manufacturing began as a divided focus between devices like power tools that augment human worker capability and purpose-designed, “monument” automation. While both have benefits and limitations, the capability of modern industrial robots has grown to the point of being able to effectively fill the capability gap between them, offering a third option in the mechanization toolbox. Moreover, increasing computer processing power continues to enable more advanced approaches to perception to inform task planning and execution. Higher performance robots supplemented with greater ability to adapt to various conditions and scenarios have also led to the ability to operate reliably and safely outside traditional fixed-installation, caged work cells.
Journal Article

Development of a Robotic System for Automated Drilling and Inspection of Small Aerostructures

2023-03-07
2023-01-1012
Traditional solutions developed for the aerospace industry must overcome challenges posed for automation systems like design, requalification, large manual content, restricted access, and tight tolerances. At the same time, automated systems should avoid the use of dedicated equipment so they can be shared between jigs; moved between floor levels and access either side of the workpiece. This article describes the development of a robotic system for drilling and inspection for small aerostructure manufacturing specifically designed to tackle these requirements. The system comprises three work packages: connection within the digital thread (from concept through to operational metrics including Statistical Process Control), innovative lightweight / low energy drill, and auto tool-change with in-process metrology. The validation tests demonstrating Technology Readiness Level 6 are presented and results are shown and discussed.
Technical Paper

Development of Hybrid Grey Based ANFIS Model for Laser Beam Welding of Inconel 718 Alloy for Automotive Industries

2022-12-23
2022-28-0505
Laser Beam Welding (LBW) is one of the advanced methods of joining metals by fusion. The LBW process exhibits comparatively better welding performance than conventional processes and this method of welding approach is exclusively employed in higher volume applications such as automotive industries. One of the most common nickel alloys used in various engineering fields is Inconel 718. This material has high strength and corrosion resistance properties, and is commonly used in high-temperature applications, such as gas turbines and rocket engines. In this study, we aim to develop an artificial intelligence tool that can analyze the influence of various process variables on the design and performance of a metal. The experiments were planned using the design approach of Taguchi. An L27 orthogonal array was used for the experiments. The three performance measures are the top width, bottom width, and penetration.
Technical Paper

Investigation on Formability of Tailored AA7075 Thin Sheets by Friction Stir Processes

2022-10-05
2022-28-0349
TWBs (tailored welded blanks) technology can open new avenues for obtaining components in the automotive, aerospace and electronics industries. Friction stir process (FSP) can control the properties by deep localized plastic deformation using the non-consumable tool. In this study, the primary objective is to investigate the effects of Graphene nanoparticles (GNPs) in AA7075 material and the effect of FSP graphene NPs on the forming limit curve of the TWBs through experiments. The micrographs of the weldment are obtained by metallography practices. Tensile specimens are separated for evaluating FSP weld zones. Obtained results exhibits the formability limit of AA7075 thin sheets and decrease FSP thin sheets formability as compared with the formability of base metals
X