Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

Laundry Study for a Lunar Outpost

2009-07-12
2009-01-2515
In support of the Constellation Program, NASA conducted an analysis of crew clothing and laundry options. Disposable clothing is currently used in human space missions. However, the new mission duration, goals, launch penalties and habitat environments may lead to a different conclusion. Mass and volume for disposable clothing are major penalties in long-duration human missions. Equivalent System Mass (ESM) of crew clothing and hygiene towels was estimated at about 11% of total life support system ESM for a 4-crew, 10-year Lunar Outpost mission. Ways to lessen this penalty include: reduce clothing supply mass through using clothes made of advanced fabrics, reduce daily usage rate by extending wear duration and employing a laundry with reusable clothing. Lunar habitat atmosphere pressure and therefore oxygen volume percentage will be different from Space Station or Shuttle. Thus flammability of clothing must be revisited.
Technical Paper

Development of Life Support System Technologies for Human Lunar Missions

2009-07-12
2009-01-2483
With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration's (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project's goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA's Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers.
Technical Paper

Life Support System Technology Development Supporting Human Space Exploration

2008-06-29
2008-01-2185
Exploration Life Support (ELS) is a technology development project under the National Aeronautics and Space Administration's (NASA) Exploration Technology Development Program. The ELS Project's goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. Technology development is directed at three major vehicle projects within NASA's Constellation Program: the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing.
Technical Paper

Revised Solid Waste Model for Mars Reference Missions

2002-07-15
2002-01-2522
A key component of an Advanced Life Support (ALS) system is the solid waste handling system. One of the most important data sets for determining what solid waste handling technologies are needed is a solid waste model. A preliminary solid waste model based on a six-person crew was developed prior to the 2000 Solid Waste Processing and Resource Recovery (SWPRR) workshop. After the workshop, comments from the ALS community helped refine the model. Refinements included better estimates of both inedible plant biomass and packaging materials. Estimates for Extravehicular Mobility Unit (EMU) waste, water processor brine solution, as well as the water contents for various solid wastes were included in the model refinement efforts. The wastes were re-categorized and the dry wastes were separated from wet wastes. This paper details the revised model as of the end of 2001. The packaging materials, as well as the biomass wastes, vary significantly between different proposed Mars missions.
Technical Paper

Advanced Life Support Requirements, Assumptions and Reference Missions

2002-07-15
2002-01-2480
To effectively develop advanced life support technologies to support humans on future missions into space, the requirements for these missions must first be defined. How many people will go? Where will they go? What risks must be protected against? Since NASA does not officially establish new exploration programs until authorized by Congress, there are no program requirements documents or list of “planned missions” to refer to. Therefore, technology developers must look elsewhere for information on how and where their development efforts and concepts may be used. This paper summarizes the development of several sources designed to help Advanced Life Support researchers working to extend a human presence in space.
Technical Paper

Systems Analysis of Life Support for Long-Duration Missions

2000-07-10
2000-01-2394
Work defining advanced life support (ALS) technologies and evaluating their applicability to various long-duration missions has continued. Time-dependent and time-invariant costs have been estimated for a variety of life support technology options, including International Space Station (ISS) environmental control and life support systems (ECLSS) technologies and improved options under development by the ALS Project. These advanced options include physicochemical (PC) and bioregenerative (BIO) technologies, and may in the future include in-situ-resource utilization (ISRU) in an attempt to reduce both logistics costs and dependence on supply from Earth. PC and bioregenerative technologies both provide possibilities for reducing mission equivalent system mass (ESM). PC technologies are most advantageous for missions of up to several years in length, while bioregenerative options are most appropriate for longer missions. ISRU can be synergistic with both PC and bioregenerative options.
Technical Paper

Freeze-Protecting Fluid Selection for Internal Thermal Control Systems

1998-07-13
981771
Candidate low-toxicity working fluids are evaluated for active internal thermal control systems in various NASA applications, such as human exploration missions and low-earth orbit spacecraft. The principal goal is to attain a lower freezing point than pure water (currently popular), for added protection against system blockage or bursting in either expected low temperature environments or in the event of failure. Fluids considered for moderate-temperature freeze protection include aqueous solutions of ethylene glycol, propylene glycol, denatured ethyl alcohol, glycerin, and potassium acetate. For very low-temperature freeze protection, the liquids Fluorinert 72, Hydrofluoroether 7100, D-Limonene, R-116, and R-134a are considered. Fluid performance with regard to pump power and heat exchange is evaluated based on comparison with water for fixed hardware and operating conditions.
Technical Paper

An Assessment of Advanced Thermal Control System Technologies for Future Human Space Flight

1996-07-01
961480
In an era of tight fiscal constraints, research and development funds are not sufficient to study all possible avenues for technology development. Hence, development priorities must be set and funding decisions made based on the projected benefits which will arise from fully developing different technologies. In order to identify promising development initiatives for advanced thermal control systems, a study was conducted which quantified the potential mass savings of various technologies. Assessments were made for five reference missions considered to be likely candidates for major human space flight initiatives beyond the International Space Station. The reference missions considered were Space Station Evolution, Space Shuttle Replacement, First Lunar Outpost Lander, Permanent Lunar Base, and Mars Lander. For each mission a baseline active thermal control system was defined and mass estimates were established.
Technical Paper

Independent Temperature and Humidity Control in a Closed Environment Plant Growth Chamber

1995-07-01
951662
Independent temperature and humidity control may be required for a variety of reasons. One application under study at the NASA Johnson Space Center is the environmental control of completely sealed plant growth chambers. The chambers are used to optimize plant growth and to develop engineering prototypes of future plant growth chamber modules for long duration space travel. One chamber at the Johnson Space Center which is part of the Early Human Test Initiative was rebuilt and upgraded during 1994. Requirements called for a thermal control system which could supply the plants with a wide range of air temperatures and independently control humidity. A math model was developed using G189 thermal/environmental modeling software to simulate the internal environment of the plant growth chamber. The model was used in the design of the chamber thermal control system.
Technical Paper

Investigation of Lunar Base Thermal Control System Options

1993-07-01
932112
Long duration human exploration missions to the Moon will require active thermal control systems which have not previously been used in space. The relatively short duration Apollo missions were able to use expendable resources (water boiler) to handle the moderate heat rejection requirement. Future NASA missions to the Moon will require higher heat loads to be rejected for long periods of time near the lunar equator. This will include heat rejection during lunar noon when direct radiation heat transfer to the surrounding environment is impossible because the radiator views the hot lunar surface. The two technologies which are most promising for long term lunar base thermal control are heat pumps and radiator shades. Heat pumps enable heat rejection to space at the hottest part of the lunar day by raising the radiator temperature above the environment temperature.
Technical Paper

Modeling and Analysis of the Space Station Freedom Active Thermal Control System Radiators Using SINDA/FLUINT

1992-07-01
921145
The thermal radiators are a major subsystem of the Space Station Freedom (SSF) Active Thermal Control System (ATCS). They dissipate to deep space the excess heat transported from the modules and truss mounted equipment. Condensation of the ATCS twophase working fluid occurs directly in small diameter tubes which are bonded to a thin aluminum face sheet in the flow-though radiator panels. The Permanently Manned Capability (PMC) configuration of the Space Station will have a total of 48 radiator panels grouped in 3 replaceable units of 8 panels on each side of the Space Station. Accurate prediction of radiator performance on orbit is important to keep the ATCS from getting too hot (exceeding its capacity) or getting too cold (freezing). For this reason, detailed models of the radiator system are being developed using the SINDA/FLUINT thermal and fluid systems analyzer.
Technical Paper

Active Thermal Control Systems for Lunar and Martian Exploration

1990-07-01
901243
Extended manned missions to the lunar and martian surfaces pose new challenges for active thermal control systems (ATCS's). Moderate-temperature heat rejection becomes a problem during the lunar day, when the effective sink temperature exceeds that of the heat-rejection system. The martian atmosphere poses unique problems for rejecting moderate-temperature waste heat because of the presence of carbon dioxide and dust. During a recent study, several ATCS options including heat pumps, radiator shading devices, and single-phase flow loops were considered. The ATCS chosen for both lunar and martian habitats consists of a heat pump integral with a nontoxic fluid acquisition and transport loop, and vertically oriented modular reflux-boiler radiators. The heat pump operates only during the lunar day. The lunar and martian transfer vehicles have an internal single-phase water-acquisition loop and an external two-phase ammonia rejection system with rotating inflatable radiators.
X