Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Applying DO-254 for Avionics Hardware Development and Certification

2024-11-20
This basic course introduces the intent of the DO-254 standard for commercial avionics hardware development. The content will cover many aspects of avionic hardware including, aircraft safety, systems, hardware planning, requirements, design, implementation, and testing. Participants will learn industry-best practices for real-world hardware development, common DO-254 mistakes and how to prevent them, and how to minimize risks and costs while maximizing hardware quality.
Training / Education

AS13100 and RM13004 Design and Process Failure Mode and Effects Analysis and Control Plans

2024-07-03
This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. In the Aerospace Industry there is a focus on Defect Prevention to ensure that quality goals are met. Failure Mode and Effects Analysis (PFMEA) and Control Plan activities are recognized as being one of the most effective, on the journey to Zero Defects. This two-day course is designed to explain the core tools of Design Failure Mode and Effects Analysis (DFMEA), Process Flow Diagrams, Process Failure Mode and Effects Analysis (PFMEA) and Control Plans as described in AS13100 and RM13004.
Technical Paper

Neural Network Modeling of Black Box Controls for Internal Combustion Engine Calibration

2024-07-02
2024-01-2995
The calibration of Engine Control Units (ECUs) for road vehicles is challenged by stringent legal and environmental regulations, coupled with short development cycles. The growing number of vehicle variants, although sharing similar engines and control algorithms, requires different calibrations. Additionally, modern engines feature increasingly number of adjustment variables, along with complex parallel and nested conditions within the software, demanding a significant amount of measurement data during development. The current state-of-the-art (White Box) model-based ECU calibration proves effective but involves considerable effort for model construction and validation. This is often hindered by limited function documentation, available measurements, and hardware representation capabilities. This article introduces a model-based calibration approach using Neural Networks (Black Box) for two distinct ECU functional structures with minimal software documentation.
Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
Technical Paper

Metrics based design of electromechanical coupled reduced order model of an electric powertrain for NVH assessment

2024-06-12
2024-01-2913
Electric vehicles offer cleaner transportation with lower emissions, thus their increased popularity. Although, electric powertrains contribute to quieter vehicles, the shift from internal combustion engines to electric powertrains presents new Noise, Vibration, and Harshness challenges. Unlike traditional engines, electric powertrains produce distinctive tonal noise, notably from motor whistles and gear whine. These tonal components have frequency content, sometimes above 10 kHz. Furthermore, the housing of the powertrain is the interface between the excitation from the driveline via the bearings and the radiated noise (NVH). Acoustic features of the radiated noise can be predicted by utilising the transmitted forces from the bearings. Due to tonal components at higher frequencies and dense modal content, full flexible multibody dynamics simulations are computationally expensive.
Technical Paper

Towards the Design-driven Carbon Footprint reduction of Composite Aerospace and Automotive components: An overview

2024-06-12
2024-37-0032
Composite materials, pioneered by aerospace engineering due to their lightweight, strength, and durability properties, are increasingly adopted in the high-performance automotive sector. Besides the acknowledged composite components’ performance, enabled lightweighting is becoming even more crucial for energy efficiency, and therefore emissions along vehicle use phase from a decarbonization perspective. However, their use entails energy-intensive and polluting processes involved in raw material production, in manufacturing processes, and, in particular, in end-of-life disposal. Carbon footprint is the established indicator to assess the environmental impact of climate-changing factors on products or services. Research on different carbon footprint sources reduction is increasing, and even the European Composites Industry Association is demanding the development of specific Design for Sustainability approaches.
Technical Paper

Analysis of the Mechanism by Which Spline Pitch Errors Affect Powertrain Vibration

2024-06-12
2024-01-2910
As environmental concerns have taken the spotlight, electrified powertrains are rapidly being integrated into vehicles across various brands, boosting their market share. With the increasing adoption of electric vehicles, market demands are growing, and competition is intensifying. This trend has led to stricter standards for noise and vibration as well. To meet these requirements, it is necessary to not only address the inherent noise and vibration sources in electric powertrains, primarily from motors and gearboxes, but also to analyze the impact of the spline power transmission structure on system vibration and noise. Especially crucial is the consideration of manufacturing discrepancies, such as pitch errors in splines, which various studies have highlighted as contributors to noise and vibration in electric powertrains. This paper focuses on comparing and analyzing the influence of spline pitch errors on two layout configurations of motor and gearbox spline coupling structures.
Training / Education

FAA Part 21 Certification Procedures for Products and Parts

2024-06-06
The aerospace industry is hinged around compliance with Part 21; however, comprehension of Part 21 and its role in civil certification is challenging. This course is designed to provide participants with an understanding of the processes that encompass aircraft certification, including compliance with FARs, certification procedures and post certification responsibilities. It is also intended to introduce participants to the many regulatory issues upon which companies make business decisions that can be derailed by failing to see the part 21 implications.
X