Refine Your Search

Search Results

Viewing 1 to 15 of 15
Standard

Test Cell Mass Fuel Flow Measurement Using Coriolis Flow Meters

2022-10-05
WIP
AIR6202A

The scope of this information report applies to the steady state measurement of direct mass fuel flow in gas turbine engine test cells. A measurement accuracy, and hence uncertainty of between ±0.1 to ±0.2% of value is believed to be achievable for liquid flow applications with some meter models/installations.

Whilst capable of general transient measurement in 50 to 100 Hz region, this type of fuel meter is not capable of rapid transient measurement (in 100 to 250 Hz region). It is also not currently considered suitable for "in flight" fuel flow measurement.

Standard

Design Considerations for Enclosed Turbofan/Turbojet Engine Test Cells

2021-02-01
CURRENT
AIR4869B
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of large and small gas turbine engines and particularly for those who might be interested in upgrading their existing or acquiring new test cell facilities.
Standard

Design Considerations for Enclosed Turbofan/Turbojet Engine Test Cells

2020-10-22
HISTORICAL
AIR4869A
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of large and small gas turbine engines and particularly for those who might be interested in upgrading their existing or acquiring new test cell facilities.
Standard

Installed Outdoor Engine Testing

2017-11-29
HISTORICAL
AIR5301A
This SAE Aerospace Information Report (AIR) was written because of the growing interest in aircraft installed outdoor engine testing by the Federal Aviation Administration, airlines, charter/commercial operators, cargo carriers, engine manufacturers and overhaul and repair stations. This document was developed by a broad cross section of personnel from the aviation industry and government agencies and includes information obtained from a survey of a variety of operators of fixed and rotary wing aircraft and research of aircraft and engine maintenance manuals.
Standard

Test Cell Mass Fuel Flow Measurement Using Coriolis Flow Meters

2017-06-14
CURRENT
AIR6202
The scope of this information report applies to the steady state measurement of direct mass fuel flow in gas turbine engine test cells. A measurement accuracy, and hence uncertainty of between ±0.1 to ±0.2% of value is believed to be achievable for liquid flow applications with some meter models/installations. Whilst capable of general transient measurement in 50 to 100 Hz region, this type of fuel meter is not capable of rapid transient measurement (in 100 to 250 Hz region). It is also not currently considered suitable for "in flight" fuel flow measurement.
Standard

Test Cell Thrust Measurement

2017-02-13
HISTORICAL
AIR4951
Thrust measurement systems come in many sizes and shapes, with varying degrees of complexity, accuracy and cost . For the purposes of this information report, the discussions of thrust measurement will be limited to axial thrust in single-axis test systems.
Standard

Gas Turbine Engine Fuel Nozzle Test Procedures

2013-12-10
CURRENT
ARP4865A
The intent of this SAE Aerospace Recommended Practice (ARP) is to define and recommend to the Aerospace Industry standardized test procedures for establishing fuel nozzle operating performance including types of tests, controlled and measured parameters, and test configurations.
Standard

Installed Outdoor Engine Testing

2007-11-15
HISTORICAL
AIR5301
This SAE Aerospace Information Report (AIR) was written because of the growing interest in aircraft installed outdoor engine testing by the Federal Aviation Administration, airlines, charter/commercial operators, cargo carriers, engine manufacturers and overhaul and repair stations. This document was developed by a broad cross section of personnel from the aviation industry and government agencies and includes information obtained from a survey of a variety of operators of fixed and rotary wing aircraft and research of aircraft and engine maintenance manuals.
Standard

Inlet Airflow Ramps for Gas Turbine Engine Test Cells

2007-11-15
HISTORICAL
AIR5306
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of gas turbine engines and particularly for those who might be interested in upgrading their existing engine test facility to meet the airflow requirements for higher thrust engine models. The intellectual property rights on the material contained in this document are protected by US Patent Number 5,293,775 dated March 15, 1994 assigned to United Technologies Corporation, Hartford, Connecticut, USA. Any individual, or organization, attempting to use the system described in this document should get a clearance from United Technologies Corporation, to avoid any potential liability arising from patent infringement.
Standard

GAS TURBINE ENGINE FUEL NOZZLE TEST PROCEDURES

2007-11-15
HISTORICAL
ARP4865
The intent of this SAE Aerospace Recommended Practice (ARP) is to define and recommend to the Aerospace Industry standardized test procedures for establishing fuel nozzle operating performance including types of tests, controlled and measured parameters, and test configurations.
Standard

DESIGN CONSIDERATIONS FOR ENCLOSED TURBOFAN/TURBOJET ENGINE TEST CELLS

1995-10-01
HISTORICAL
AIR4869
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of large and small gas turbine engines and particularly for those who might be interested in upgrading their existing or acquiring new test cell facilities.
X