Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Tire Development for New Electric Vehicle through Driver in Loop Approach

2024-04-09
2024-01-2654
In recent years, the push for reduced product development timelines has been more than ever with significant changes in the automotive market. High electrification, intelligent vehicle systems and increased number for car manufacturers are a few key drivers to the same. The front loading of development activities is now a key focus area for achieving faster product development. From vehicle dynamics point of view availability of subjective evaluation feedback plays a key role in optimization various system specifications. This paper discusses an approach for front loading through parallel development of the tire and vehicle chassis system, using advanced simulation and driving simulator technology. The proposed methodology uses virtual tire models which in combination with real-time vehicle model enables subjective evaluation of vehicle performance in driver-in-loop simulators.
Technical Paper

A Methodology of Optimizing Steering Geometry for Minimizing Steering Errors

2024-01-16
2024-26-0062
The focus on driver and occupant safety as well as comfort is increasing rapidly while designing commercial vehicles in India. Improvements in the road network have enhanced road transport for commercial vehicles. Apart from the cost of operation and fuel economy, the commercial vehicles must deliver goods within stipulated time. These factors resulted in higher speed of operation for commercial vehicles. The design should not compromise the safety of the vehicle at these higher speeds of operation. The vehicle should obey the driver’s intended direction at all speeds and the response of the vehicle to driver input must be predictable without much larger surprises which can lead to accidents. The commercial vehicles are designed with rigid axle and RCB type steering system. This suspension and steering design combination introduce steering errors when vehicle travel over bump, braked and while cornering.
Technical Paper

A Real-World Range Testing and Analysis Methodology Development for Battery Electric Vehicles

2024-01-16
2024-26-0124
Range anxiety is one of the major factors to be dealt with for increasing penetration of EVs in current Automotive market. The major reasons for range anxiety for customers are sparse charging infrastructure availability, limited range of Electric vehicles and range uncertainty due to diverse real-world usage conditions. The uncertainty in real world range can be reduced by increasing the correlation between the testing condition during vehicle development and real-world customer usage condition. This paper illustrates a more accurate test methodology development to derive the real-world range in electric vehicles with experimental validation and system level analysis. A test matrix is developed considering several variables influencing vehicle range like different routes, drive modes, Regeneration levels, customer drive behavior, time of drive, locations, ambient conditions etc.
Technical Paper

Optimization of Trim Clip Design for Performance Improvement

2024-01-16
2024-26-0367
As customers are inching towards adoption of electric vehicles as an alternative to internal combustion engines, automotive OEM’s will have to embrace this change and equip with new product development process. When it comes to Electric Vehicle (EV) in comparison with Internal Combustion Engine (ICE), NVH plays a major differentiator for vehicle refinement. Squeak and rattles will account for 20-25% of overall in-cabin noise source in an electric vehicle, most of which is observed from interior trims. Trims are mounted using small plastic clips which function as attachments and play a significant role in part retention and part integrity during normal operation and in case of any transient events. The engineering specifications for selecting a clip is force in newtons and it is mostly driven by ease of assembly, serviceability, and durability. A single DOF system with a specimen mass is developed and stiffness and damping are calculated based on transmissibility.
Technical Paper

Solving Whine Noise in Electric Vehicles: A Comprehensive Study Using Experimental and Multiphysics Techniques

2024-01-16
2024-26-0222
This paper examines one of the approaches used to identify the root causes of sound quality issues in vehicles, including the direct impact of psychoacoustics on the human experience. Specifically, the absence of masking effects provided by traditional combustion engines has made noise and vibration from electric drives significant factors in decision-making processes, with high-pitched tonal noise from electric motors causing annoyance and sound quality concerns for electrified propulsion systems. During vehicle testing at different speeds, a whining noise was observed, leading to an NVH test to locate the noise source. The noise is traced to the transmission by the dominating order of input reduction along with the contribution from the casing resonance. A multi-physics-based e-NVH analysis was performed, and the test data were correlated.
Technical Paper

Experimental Investigation of Efficiency Enhancement of Manual Transmission Gearbox Synchronizer Rings for the Enrichment of Gearshift Quality

2023-11-10
2023-28-0114
In developing countries, manual transmissions are leading the market due to their efficiency and low cost. In a manual transmission, the synchronizers play a vital role in defining the gear shift quality. Manual transmission vehicles are getting refined for a pleasant driving experience. The gear shift quality is one of the unique selling points for the vehicle, so the automakers are focusing on the reduction of the gear shift forces. In a manual transmission, the synchronizers are used to match the speed difference between the upstream and downstream inertia for the gear-shifting process. The synchronizers have conical friction surfaces to generate friction and cone torque. The increase in cone torque reduces the gear shift impulse. The cone torque can be increased with mismatch tolerance in the frictional surfaces. In this technique, two cone angles are used for the frictional surfaces.
Technical Paper

Effect of Temperature on Synchronizer Ring Performance

2023-11-10
2023-28-0054
The brass synchronizers are not resistant to abusive conditions of gearbox operations, but they are very durable and cheap when used on their favorable material property working limit. The main failure which can occur in the gearbox due to the synchronizer is crash noise. During gear shifting the gear crash will create high discomfort for the driver and must apply high force to change the gears. The main factors which contribute to the crash phenomenon are the insufficient coefficient of friction, high drag in the system, and high wear rate of the synchronizer rings before the intended design life of the synchronizer. The brass synchronizers were tested on the SSP-180, ZF synchronizer test rig to know the effect of the synchronizer performance parameters like the coefficient of friction, sleeve force, slipping time as well as durability parameters like wear rate when the operating temperature of the oil is changed.
Technical Paper

Study of Indirect Heat Pump for an Electric Vehicle

2023-09-14
2023-28-0023
Electric Vehicle is the need of an hour, as due to excessive usage of IC Engine vehicles has resulted in the depletion of the ozone layer to a significant level and fuel cost is increasing. With new technologies coming into the market, challenges come hand in hand because of Electric Vehicle. In comparison to IC Vehicle, areas of thermal management or the number of components for which thermal management needs to be done is higher and rather complex. As the thermal management system is the second highest energy consuming source after the powertrain of the electric vehicle, an efficient and reliable design is mandatory to ensure better range in an Electric Vehicle. Thermal Management of the Electric Vehicle has been identified as one of the critical parameters for balancing both cabin comfort as well as Battery temperature. One of the major concerns is meeting the Cabin comfort during colder weather with minimum energy consumption.
Technical Paper

Effect of Varying Levels of Work Hardening and Bake Hardening on the Mechanical Properties of Dual Phase Steels

2023-05-25
2023-28-1331
In most cases, the properties of a metal are evaluated in their as rolled condition, prior to any work hardening or bake hardening. But in the Automotive World, these steels get work hardened during the forming process and bake hardened in the paint shop. The goal of this paper is to evaluate the variations in the performance of Dual Phase (DP) steels and understand the most optimized method of testing and property generation. This method can then be used to extrapolate to real automotive components. Dual Phase Steels or DP Steels contain a mixture of Ferrite & Martensite from which they derive their name. They are a part of the advanced high strength and ultra-high strength steels steel family according to World Auto Steels. The Ferrite phase, with its iron content contributes to the material displaying an increased level of ductility whilst, the martensitic phase provides the steel with increased mechanical strength.
Technical Paper

Electric Mobility and Technical Textile Necessity

2023-04-11
2023-01-0874
E-mobility is creating more challenges and great opportunities for automotive textile industries to bring out new textiles for light weight, more aesthetic, better feel, sustainable and biomaterial to meet the customer perception. Textiles allows a more design freedom to in terms of construction, weaving and wrapping solutions. A hard rough plastic surface could be transferred into a more pleasant soft touch surface by a simple wrapping with textiles. The introduction of electric vehicle will convert the car as more silent as it replaces the engine by motor and battery mechanism. The more silent is the car, the more silent is the BSR behavior of the material. This work discloses of a polyester textile developed to meet automotive lightweight to strength requirements with its new nonwoven construction for seat insert and bolster application which demands for high breaking strength, abrasion resistance, stretch and set and soiling resistance.
Technical Paper

Light Weight Composite Structure Approach of Automotive Soft Top Construction

2023-04-11
2023-01-0876
In an off-road vehicle, Vehicle Structure plays a major role in passenger safety, Aesthetics, Durability, through a validated construction of canopy structure. This structure is to maintain the shape of the vehicle and to support various loads acting on the vehicle. In present market a safe, Durable, Robust, Waterproof, Noise less, Light weight and cost-effective off-road vehicle will always be a delight for any customer. However, the current conventional way of Soft top vehicle structure use metal brackets and formed sheet parts to create a structure to retain the canopy shape in place. These conventional structures are often heavier and would have many demerits such as heavy weight, Corrosion, Risk of canopy tear due to metallic structure edges and inappropriate draining, water management. Considering this we replaced the heavy metal brackets in to blow molded plastic parts.
Technical Paper

Light Weight Material for Entry Assist Grab Handle with Gas Assist Technology

2023-04-11
2023-01-0875
Ground clearance plays a vital role in an off-road vehicle during off roading. Higher the ground clearance, higher is the difficulty during ingress & egress of the vehicle. This brings in the necessity to provide entry-assist grab-handles for vehicle with more ground clearance (>200mm). Entry-assist grab handles alleviates the pain of the occupants during ingress and egress. For entry-assist grab handles’ purpose to be served, it should provide comfortable ergonomic grip & have to take the load of passengers while ingress or egress through-out the complete life cycle of the vehicle. Entry Assist grab handles can be fitted on A-Pillar zone to assist first row passengers & on B-pillar zone to assist second row passenger. Providing entry-assist grab handles on pillar trims make the grab-handles exposed to head-impact zone and hence, in most of the cases, it should pass the head impact regulations framed for respective countries.
Technical Paper

A Methodology to Validate the V-band Clamp Used in High-Temperature Sealing Joint of a Light-Duty Diesel Engine

2022-03-29
2022-01-0637
The stringent emission regulations demand highly complex after-treatment systems. The packaging and functional requirements of the after-treatment system demand very close coupling of the diesel oxidation catalyst (DOC) with the turbocharger outlet. The sealing effectiveness between the turbocharger and DOC is ensured by the V-band grooved clamp along with the suitable gasket. This V-band grooved clamp is widely used in diesel engines due to its ease of assembly and low cost. Since the V-band grooved clamp is subjected to a very high temperature, vibration, thermal shock, a robust and holistic validation is required to ensure the functional and safety requirements. Despite its wide range of applications, the testing and validation methodologies required to effectively validate the strength and other aspects of the clamp are not fully defined. In the present work, the authors discuss the various design validation methods involved during the development of the V-band grooved clamp.
Technical Paper

Aerodynamic Performance Assessment on Typical SUV Car Model by On-Road Surface Pressure Mapping Method

2021-10-01
2021-28-0188
Aerodynamics of on-road vehicles has come to the limelight in the recent years. Better aerodynamic design of vehicle would improve vehicle fuel efficiency with increased acceleration performance. To obtain best aerodynamic body, the series of design modifications and different testing methodologies must be involved in vehicle design and validation phase. Wind tunnel aerodynamic force measurement, road load determination and computational fluid dynamics were the common methods used to evaluate the aerodynamic behavior of the vehicle body. As a novel approach, the present work discusses about the on-road (Real time) testing methodology that is aimed to evaluate the aerodynamic performance of vehicle body using surface pressure mapping. A 64-Channel digital pressure scanner has been utilized in this work for mapping the pressure at different locations of the typical vehicle body.
Technical Paper

Impact of Chemical Blowing Agent on Polypropylene Properties

2021-10-01
2021-28-0203
Weight reduction in automotive applications have led to the processing of thermoplastic polymers by foam injection molding. The density of the foamed polymer can be reduced up to 20%. Whilst, work has been reported on the weight reduction of the foamed polymer by using different types of blowing agent technologies, there has been limited studies in the areas of the sound transmission loss and sound attenuation properties of these materials. The present study is intended to understand the effect of chemical blowing agent (CBA) on the properties of polypropylene. The molded specimens were characterized using density, Differential scanning colorimetry (DSC), Thermogravimetric analysis (TGA), Fourier transform infra-red spectroscopy (FT-IR) and sound transmission loss (STL) measurements. Specimens were also tested for tensile properties, flexural properties, Izod impact strength and Heat deflection temperature (HDT) as per standard test protocol.
Technical Paper

Development of an all Speed Governed Diesel-CNG Dual Fuel Engine for Farm Applications

2021-09-22
2021-26-0101
This paper discusses the development of an all speed governed diesel-natural gas dual fuel engine for agricultural farm tractor. A 45 hp, 2.9 liters diesel-natural gas dual fuel engine with a novel closed loop secondary fuel injection system was developed. A frugal approach without any modification of the base mechanical diesel fuel injection system was followed. This approach helped to minimize the cost impact, while meeting performance and emissions at par with neat diesel operation. Additional cost on gas injection system is redeemed by cost savings on diesel fuel. The dual fuel technology developed by Mahindra & Mahindra Ltd., substitutes on an average approximately 40% of diesel with compressed natural gas, meeting the TREM III A emission norms for dual fuel while meeting all application requirements. The governing performance of the tractor was found to be superior than base diesel tractor.
Technical Paper

Development of Sensor Based Rotavator Unit For Display of Operational Parameters on Various Soil Conditions

2021-09-22
2021-26-0091
Rotavator is an active tillage implement for breaking the Soil and for the preparation of seed bed for cultivation. The Farmers are currently facing problem due to usage of sub optimal speed of Rotavator which results in more fuel consumption, takes more time for completion of operation. Also, the Current Rental models work on Tractor + Implement as rental combination and customer not able to rent Rotavator as a standalone implement due to non-availability of Tracking information such as hours of utilization on Rotavator. Farmers not able to maintain the service periodicity, if oil change not done in prescribed duration then it may result in improper maintenance and breakdown of the Rotavator. To overcome these problems a smart Rotavator developed consists of an electronic unit fitted on the Rotavator shaft to measure the speed of the shaft rotation and in turn convert to Rotavator speed and also able to convert into Hours of usage based on the starting and stopping of the rotavator.
Technical Paper

Automated Test Setup for Edge Compute Connectivity Devices by Recreating Live Connected Ecosystem on the Bench

2021-09-22
2021-26-0498
Connected vehicle services have come a long way from the early days of telematics, both in terms of breadth of the class of vehicles, and in terms of richness or complexity of the data being handled for Enhancing Customer Experience. The Connectivity Control unit (CCU) is a gateway device for the vehicle to the outside world. While it enables transmission of vehicle data along with the location information. CCU is currently validated in the vehicle to check functionality. It has cost, time drawbacks and prevents effective testing of many scenarios. Bench level validation will not be able to complete functionality validation. There is subset of validation tools or semi-automated solutions are available in the market, but they are not fully functional, and critically cannot perform end to end validation. Automated Test setup for CCU in lab simulating the entire field data of the vehicle with modifiable characteristics.
Technical Paper

Design Improvement and Failure Simulation of Thermostat Vent Using Fatigue Test Method

2021-09-22
2021-26-0456
Currently the Automotive industry demands highly competitive product to survive in the global tough competition. Even if there is a slight reduction in product cost and time has a high significant impact on business. Engineers are under tremendous pressure to develop competitive and give better product concern resolution at the earliest. To arrest the failure of this thermostat vent, an innovative approach was used to relocate de-aeration restrictor on the hose to the thermostat root. Thus, resolving the product concern by increasing the strength of the vent at root and providing good business impact on cost savings. Physical testing has provided an effective way to smoothen product development for concern resolution. This Paper highlights approach on an attempt to field failure simulation with existing and modified design with lab test results.
Technical Paper

Innovative Method of Child Injury Performance Optimization using Sled Tests

2021-09-22
2021-26-0008
Child injury performance evaluation is becoming critical part of almost all legal and consumer ratings-based vehicle safety evaluation protocols. Most of New CAR Assessment Programs (NCAP) now have separate ratings exclusively to evaluate child restraint system effectiveness and child dummy performance under various crash testing modes. OEM’s have need and challenge to maximize injury performance. Sled tests are conventionally used for tuning restraints like seat belts and airbags for driver and co-driver under various frontal type test conditions. However, second row seats are used for CRS/ Child injury performance evaluations. In the present study an attempt is made to simulate child injury performance of P3 dummy positioned on second row seat on defined child seat for 64 kmph frontal Offset deformable barrier type test conforming to Global NCAP. Sled pulses are carefully tuned to capture key injury patterns. Thence restraint parameters are tuned to improve child dummy injuries
X