Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Data Fusion Techniques for Object Identification in Airport Environment

2017-09-19
2017-01-2109
Airport environments consist of several moving objects both in the air and on the ground. In air moving objects include aircraft, UAVs and birds etc. On ground moving objects include aircraft, ground vehicles and ground personnel etc. Detecting, classifying, identifying and tracking these objects are necessary for avoiding collisions in all environmental situations. Multiple sensors need to be employed for capturing the object shape and position from multiple directions. Data from these sensors are combined and processed for object identification. In current scenario, there is no comprehensive traffic monitoring system that uses multisensor data for monitoring in all the airport areas. In this paper, for explanation purposes, a hypothetical airport traffic monitoring system is presumed that uses multiple sensors for avoiding collisions.
Technical Paper

Aircraft Weight and Center of Mass Estimation System

2016-09-20
2016-01-2025
Aircraft weight and center of mass are two critical design and operational parameters that have to be within a design envelope to ensure a safe and efficient operation of aircraft. Previous efforts to accurately determine aircraft weight and center of mass before takeoff using landing gear shock strut pressures have failed due to the distortion of measured pressures by shock strut seal friction. Currently, aircraft loading process is controlled with loading sheets and passenger/cargo weight estimation as there are no online measurement systems that can accurately and efficiently estimate aircraft weight and determine the center of mass location before takeoff. However, errors in loading sheets, shifting cargo and errors in weight estimation could lead to incorrect loading of aircraft and, consequently, increase the risk of accidents, particularly in cargo flights.
Technical Paper

Wavelet-based Fouling Diagnosis of the Heat Exchanger in the Aircraft Environmental Control System

2015-09-15
2015-01-2582
The Environmental Control System (ECS) of an aircraft provides thermal and pressure control of the engine bleed air for comfort of the crew members and passengers onboard. For safe and reliable operation of the ECS under complex operating environments, it is critical to detect and diagnose performance degradations in the system during early phases of fault evolution. One of the critical components of the ECS is the heat exchanger, which ensures proper cooling of the engine bleed air. This paper presents a wavelet-based fouling diagnosis approach for the heat exchanger.
Technical Paper

System-Level Fault Diagnosis with Application to the Environmental Control System of an Aircraft

2015-09-15
2015-01-2583
This paper addresses the issues of Fault Detection and Isolation (FDI) in complex networked systems such as the Environmental Control System (ECS) of an aircraft. The ECS controls and supplies pressurized air to the aircraft and consists of multiple subsystems that in turn consist of interconnected components, heterogeneous sensing devices, and feedback controllers. These complex interconnections and feedback control loops make fault detection and isolation a very challenging task in the ECS. For example, a faulty component yields off-nominal outputs which are inputs to the other coupled components. This coupling leads to off-nominal outputs from otherwise healthy components, thus causing unwanted false-alarms. Secondly, due to off-nominal inputs, the healthy components are driven beyond their normal operating conditions, leading to cascading failures.
Technical Paper

Design and Implementation of Aircraft System Health Management (ASHM) Utilizing Existing Data Feeds

2015-09-15
2015-01-2587
The Aircraft System Health Management (ASHM) tool is a UTC developed web application that provides access to Aircraft Condition Monitoring Function (ACMF) reports and Flight Deck Effects (FDE) records for Boeing 787®, A320®, and A380® aircraft. The tool was built with a flexible architecture to field a range of off-board diagnostics and prognostics modules designed to transform an abundance of data into actionable and timely knowledge about fleet health. This paper describes the system architecture and implementation with a focus on “lessons learned” in applying diagnostic and prognostics algorithms to available fleet data. Key topics include ensuring analytic robustness, design for cross-enterprise collaboration and defining a workable approach to testing, validating and deploying prognostics and diagnostics models with various degrees of complexity. A case study is provided related to fluid leak detection within an environmental control subsystem.
Technical Paper

Embedded COTS - A Gateway for New Processors/High Performing Machines to Digital Avionics System Industry

2014-09-16
2014-01-2206
Today's digital avionics systems leverage the use of the Embedded COTS (Commercial Off The Shelf) hardware to fit the need of small form factor, low power, reduced time to market and reduced development time with efficient use of DO-254 for compliance of product. COTS modules are entering in digital avionics systems such as COM (Computer On Module)/SOM (System On Module)/SIP (System In Package) with huge advancement in semiconductor and packaging industry. In today's scenario COTS are very useful for DAL (Development Assurance Level) C and below as the efforts on compliance for DAL A and B are huge. This paper proposes to use these for DAL A and B as well, where one can get enormous benefit on efforts of compliance and time to market. This paper makes an attempt to explain the current scenario of the Embedded COTS usage in Avionics Systems.
Technical Paper

Heat Exchanger Fouling Diagnosis for an Aircraft Air-Conditioning System

2013-09-17
2013-01-2250
This paper addresses the issue of fault diagnosis in the heat exchanger of an aircraft Air Conditioning System (ACS). The heat exchanger cools the air by transferring the heat to the ram-air. Due to a variety of biological, mechanical and chemical reasons, the heat exchanger may experience fouling conditions that reduces the efficiency and could considerably affect the functionality of the ACS. Since, the access to the heat exchanger is limited and time consuming, it is preferable to implement an early fault diagnosis technique that would facilitate Condition Based Maintenance (CBM). The main contribution of the paper is pre-flight fault assessment of the heat exchanger using a combined model-based and data-driven approach of fault diagnosis. A Simulink model of the ACS, that has been designed and validated by an industry partner, has been used for generation of sensor data for various fouling conditions.
X