Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Analytical Prediction of Residual Stresses in Cold Formed Steel Sections with Elastic - Perfectly Plastic Material Model

2017-01-10
2017-26-0169
The objective of this paper is to provide a reliable and robust mechanics based analytical approach for the accurate prediction of residual stresses in cold formed steel members. The forming residual stresses and associated equivalent plastic strains in cold formed corner sections are predicted with the assumption of elastic-perfectly plastic material model. The predicted analytical solution results are then compared with the existing analytical solution results. This work demonstrates that the exact estimation of forming residual stresses and equivalent plastic strains are possible with the inclusion of shift in neutral axis resulting from unequal thresholds of plasticity levels at the top and bottom surfaces of small radius corner sections. The predicted forming residual stresses and the associated equivalent plastic strains together define the initial conditions of corner sections for further non-linear structural behavior analysis of cold formed structures.
Technical Paper

Study on the Effect of Allied Components in the Life of a Parabolic Spring in Passenger Vehicle Application

2017-01-10
2017-26-0313
In today competitive world, gaining customer delight is the most vital part of an automotive business. Customers’ expectations are high which need to be satisfied limitless, to stay in the business. The major expectation of a commercial vehicle customer is a vehicle without failures which involves lower spares cost and downtime. The significance of a suspension system in the new age automobiles is getting advanced. There have been many improvements in the suspension system especially in leaf springs to provide a better ride comfort, and one such modern era implementation is the Parabolic Spring which comprises of fewer leaves with varying thickness from the center to the ends without inter-leaf friction. Study reveals that parabolic spring exhibits better ride comfort, but less life compared to a conventional leaf spring which leads to the increase in downtime of the vehicle.
Technical Paper

Flexible Multi-body Dynamic Analysis of Multi-Cylinder Engine Valve Train

2011-01-19
2011-26-0086
In this paper, valve spring parameters are optimized based on an iterative logic with constraint on space availability, stress limit, stiffness and natural frequency of the system. The optimized valve spring configuration is used in the push rod type valve train and the valve train dynamics for different engine speed is studied using commercially available multi-body dynamic ADMAS software. The valve train components such as cam, tappet, push rod, rocker arm, valve retainers and valve are modelled as rigid bodies and the valve springs (inner and outer valve springs) are modelled as flexible bodies. Each coil of the springs is modelled as separate flexible body and contact between these coils are established. A comparative valve train dynamics analysis is also carried out with the existing and optimized valve spring combinations.
Technical Paper

Microstructure and Wear Behavior of Austempered and as-cast Ausferritic Gray Cast Irons

2011-01-19
2011-26-0051
The mechanical and wear behaviour of an alloyed gray cast iron with ausferrite microstructure directly obtained on solidification has been compared with austempered alloyed gray iron. As-cast ausferritic gray iron shows finer ausferrite and graphite flake morphology compared to austempered alloy. The volume of retained austenite is about 30% higher in as-cast ausferritic iron due to higher amount of alloying additions. The mechanical and wear properties of as-cast ausferritic iron are almost similar to austempered alloy.
X