Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Influence of Wheel Wake on Vehicle Aerodynamics: An Eddy-Resolving Simulation Study

2023-04-11
2023-01-0842
A computational study of the vehicle aerodynamics influenced by the wake of the rotating wheel taking into account a detailed rim geometry is presently performed. The car configuration corresponds to a full-scale (1:1) notchback configuration of the well-known ‘DrivAer’ vehicle model, Heft et al. [1]. The objective of the present work is to investigate the performance of some popular turbulence models in conjunction with different methods for handling the wheel rotation – rotating wall velocity, ‘multiple reference frame’ and ‘sliding grid algorithm’. The specific focus hereby is on a near-wall RANS eddy-viscosity model based on elliptic-relaxation, sensitized to resolve fluctuating turbulence by introducing a specifically modeled production term in the scale-supplying equation, motivated by the Scale-Adaptive Simulation approach (SAS, [2]), proposed by Krumbein et al. [3].
Technical Paper

Thermodynamic Influences of the Top Land Volume on the Late Combustion Phase - A New Research Approach

2021-04-06
2021-01-0468
As the late combustion phase in SI engines is of high importance for a further reduction of fuel consumption and especially emissions, the impacts of unburnt mass, located in a small volume with a relatively large surface near the wall and in the top land volume, is of high relevance throughout the range of operation. To investigate and quantify the respective interactions, a state of the art Mercedes-Benz single cylinder research SI-engine was equipped with extensive measurement technology. To detect the axial and radial temperature distribution, several surface thermocouples were applied in two layers around the top land volume. As an additional reference, multiple surface thermocouples in the cylinder head complement the highly dynamic temperature measurements in the boundary zones of the combustion chamber.
Technical Paper

Influence of Open-Jet Effects on Vehicle Wind Tunnel Measurements

2021-02-15
2021-01-5014
The wind tunnel is the standard tool in the development and improvement of vehicle aerodynamics. Usually, automotive wind tunnels contain an open test section, which results in a shear layer developing on the edge of the jet. This shear layer brings instabilities that can lead to resonance effects in the wind tunnel influencing the pressure distribution in the test section. To investigate the resonance effects, the classic wind tunnel corrections were applied to averaged drag measurements recorded in a resonance and nonresonance configuration of the model scale wind tunnel of the University of Stuttgart. The Mercker-Wiedemann-Method shows good compensation for the differing pressure gradients. Pressure measurements on the surface of the DrivAer Notchback model show different separation points on the rear window for measurements in resonance and nonresonance configuration. This means that the resonance effects can influence the separation significantly.
Technical Paper

Virtual Investigation of Real Fuels by Means of 3D-CFD Engine Simulations

2019-09-09
2019-24-0090
The reduction of both harmful emissions (CO, HC, NOx, etc.) and gases responsible for greenhouse effects (especially CO2) are mandatory aspects to be considered in the development process of any kind of propulsion concept. Focusing on ICEs, the main development topics are today not only the reduction of harmful emissions, increase of thermodynamic efficiency, etc. but also the decarbonization of fuels which offers the highest potential for the reduction of CO2 emissions. Accordingly, the development of future ICEs will be closely linked to the development of CO2 neutral fuels (e.g. biofuels and e-fuels) as they will be part of a common development process. This implies an increase in development complexity, which needs the support of engine simulations. In this work, the virtual modeling of real fuel behavior is addressed to improve current simulation capabilities in studying how a specific composition can affect the engine performance.
Journal Article

The Development of an Highly Modular Designed Zero-Dimensional Engine Process Calculation Code

2010-04-12
2010-01-0149
The main objective of the FVV-project “Cylinder Module” was the development of a profoundly modular designed concept for object-oriented modeling of in-cylinder processes of internal combustion engines. It was designed in such a way, that it can either be used as a stand-alone real working-process calculation tool or in tools for whole vehicle simulations. It is possible to run the “Cylinder Module”-code inside the FVV-“GPA”-software for transient vehicle and driving cycle simulations and it is possible to use the graphical user interface “ATMOS” of the “GPA”-project. The code can also be used as a user-subroutine in 1-D-flow simulation codes. Much effort was spent on the requirements of flexibility and expandability in order to be well prepared to cope with the diversity of both today's and future tasks. The code is freely available for members of the German Research Association for Combustion Engines (FVV).
X