Refine Your Search

Topic

Author

Search Results

Technical Paper

Assessing Resilience in Lane Detection Methods: Infrastructure-Based Sensors and Traditional Approaches for Autonomous Vehicles

2024-04-09
2024-01-2039
Traditional autonomous vehicle perception subsystems that use onboard sensors have the drawbacks of high computational load and data duplication. Infrastructure-based sensors, which can provide high quality information without the computational burden and data duplication, are an alternative to traditional autonomous vehicle perception subsystems. However, these technologies are still in the early stages of development and have not been extensively evaluated for lane detection system performance. Therefore, there is a lack of quantitative data on their performance relative to traditional perception methods, especially during hazardous scenarios, such as lane line occlusion, sensor failure, and environmental obstructions.
Technical Paper

Real World Use Case Evaluation of Radar Retro-reflectors for Autonomous Vehicle Lane Detection Applications

2024-04-09
2024-01-2042
Lane detection plays a critical role in autonomous vehicles for safe and reliable navigation. Lane detection is traditionally accomplished using a camera sensor and computer vision processing. The downside of this traditional technique is that it can be computationally intensive when high quality images at a fast frame rate are used and has reliability issues from occlusion such as, glare, shadows, active road construction, and more. This study addresses these issues by exploring alternative methods for lane detection in specific scenarios caused from road construction-induced lane shift and sun glare. Specifically, a U-Net, a convolutional network used for image segmentation, camera-based lane detection method is compared with a radar-based approach using a new type of sensor previously unused in the autonomous vehicle space: radar retro-reflectors.
Technical Paper

Analysis of Real-World Preignition Data Using Neural Networks

2023-10-31
2023-01-1614
1Increasing adoption of downsized, boosted, spark-ignition engines has improved vehicle fuel economy, and continued improvement is desirable to reduce carbon emissions in the near-term. However, this strategy is limited by damaging preignition events which can cause hardware failure. Research to date has shed light on various contributing factors related to fuel and lubricant properties as well as calibration strategies, but the causal factors behind an individual preignition cycle remain elusive. If actionable precursors could be identified, mitigation through active control strategies would be possible. This paper uses artificial neural networks to search for identifiable precursors in the cylinder pressure data from a large real-world data set containing many preignition cycles. It is found that while follow-up preignition cycles in clusters can be readily predicted, the initial preignition cycle is not predictable based on features of the cylinder pressure.
Technical Paper

Vehicle Lateral Offset Estimation Using Infrastructure Information for Reduced Compute Load

2023-04-11
2023-01-0800
Accurate perception of the driving environment and a highly accurate position of the vehicle are paramount to safe Autonomous Vehicle (AV) operation. AVs gather data about the environment using various sensors. For a robust perception and localization system, incoming data from multiple sensors is usually fused together using advanced computational algorithms, which historically requires a high-compute load. To reduce AV compute load and its negative effects on vehicle energy efficiency, we propose a new infrastructure information source (IIS) to provide environmental data to the AV. The new energy–efficient IIS, chip–enabled raised pavement markers are mounted along road lane lines and are able to communicate a unique identifier and their global navigation satellite system position to the AV. This new IIS is incorporated into an energy efficient sensor fusion strategy that combines its information with that from traditional sensor.
Technical Paper

Light-duty Plug-in Electric Vehicles in China: Evolution, Competition, and Outlook

2023-04-11
2023-01-0891
China's plug-in electric vehicle (PEV) market with stocks at 7.8 million is the world's largest in 2021, and it accounts for half of the global PEV growth in 2021. The PEV market in China has dramatically evolved since the pandemic in 2020: over 20% of all new PEV sales are from China by mid-2022. Recent features of PEV market dynamics, consumer acceptance, policies, and infrastructure have important implications for both the global energy market and manufacturing stakeholders. From the perspective of demand pull-supply push, this study analyzes China's PEV industry with a market dynamics framework by reviewing sales, product and brand, infrastructure, and government policies from the last few years and outlooking the development of the new government’s 14th Five-Year Plan (2021-2025).
Technical Paper

Artificial Neural Networks for In-Cycle Prediction of Knock Events

2022-03-29
2022-01-0478
Downsized turbocharged engines have been increasingly popular in modern light-duty vehicles due to their fuel efficiency benefits. However, high power density in such engines is achieved thanks to high in-cylinder pressure and temperature conditions that increase knock propensity. Next-cycle control has been studied as a method to reduce the damaging effects of knock by operating the engine in a low knock probability condition. This exploratory study looks at the feasibility of in-cycle knock prediction as a tool for advanced knock control algorithms. A methodology is proposed to 1) choose in-cycle features of the pressure trace that highly correlate with knock events and 2) train artificial neural networks to predict in-cycle knock events before knock onset. The methodology was validated at different operating conditions and different levels of generalization. Precision and recall were used as metrics to evaluate the binary classifier.
Technical Paper

Dilute Combustion Control Using Spiking Neural Networks

2021-04-06
2021-01-0534
Dilute combustion with exhaust gas recirculation (EGR) in spark-ignition engines presents a cost-effective method for achieving higher levels of engine efficiency. At high levels of EGR, however, cycle-to-cycle variability (CCV) of the combustion process is exacerbated by sporadic occurrences of misfires and partial burns. Previous studies have shown that temporal deterministic patterns emerge at such conditions and certain combustion cycles have a significant influence over future events. Due to the complexity of the combustion process and the nature of CCV, harnessing all the deterministic information for control purposes has remained challenging even with physics based 0-D, 1-D, and high-fidelity computational fluid dynamics (CFD) models. In this study, we present a data-driven approach to optimize the combustion process by controlling CCV adjusting the cycle-to-cycle fuel injection quantity.
Technical Paper

Heterogeneous Machine Learning on High Performance Computing for End to End Driving of Autonomous Vehicles

2020-04-14
2020-01-0739
Current artificial intelligence techniques for end to end driving of autonomous vehicles typically rely on a single form of learning or training processes along with a corresponding dataset or simulation environment. Relatively speaking, success has been shown for a variety of learning modalities in which it can be shown that the machine can successfully “drive” a vehicle. However, the realm of real-world driving extends significantly beyond the realm of limited test environments for machine training. This creates an enormous gap in capability between these two realms. With their superior neural network structures and learning capabilities, humans can be easily trained within a short period of time to proceed from limited test environments to real world driving.
Technical Paper

Non-Destructive Measurement of Residual Strain in Connecting Rods Using Neutrons

2018-04-03
2018-01-1063
Increasing the strength of materials is effective in reducing weight and boosting structural part performance, but there are cases in where the residual strain generated during the process of manufacturing of high-strength materials results in a decline of durability. It is therefore important to understand how the residual strain in a manufactured component changes due to processing conditions. In the case of a connecting rod, because the strain load on the connecting rod rib sections is high, it is necessary to clearly understand the distribution of strain in the ribs. However, because residual strain is generally measured by using X-ray diffractometers or strain gauges, measurements are limited to the surface layer of the parts. Neutron beams, however, have a higher penetration depth than X-rays, allowing for strain measurement in the bulk material.
Technical Paper

Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing

2018-04-03
2018-01-1260
Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means for interrogating the condition of the filter itself.
Technical Paper

Development of a Cold Start Fuel Penalty Metric for Evaluating the Impact of Fuel Composition Changes on SI Engine Emissions Control

2018-04-03
2018-01-1264
The U.S. Department of Energy’s Co-Optimization of Fuels and Engines initiative (Co-Optima) aims to simultaneously transform both transportation fuels and engines to maximize performance and energy efficiency. Researchers from across the DOE national laboratories are working within Co-Optima to develop merit functions for evaluating the impact of fuel formulations on the performance of advanced engines. The merit functions relate overall engine efficiency to specific measurable fuel properties and will serve as key tools in the fuel/engine co-optimization process. This work focused on developing a term for the Co-Optima light-duty boosted spark ignition (SI) engine merit function that captures the effects of fuel composition on emissions control system performance. For stoichiometric light-duty SI engines, the majority of NOx, NMOG, and CO emissions occur during cold start, before the three-way catalyst (TWC) has reached its “light-off” temperature.
Journal Article

Electric Drive Transient Behavior Modeling: Comparison of Steady State Map Based Offline Simulation and Hardware-in-the-Loop Testing

2017-03-28
2017-01-1605
Electric drives, whether in battery electric vehicles (BEVs) or various other applications, are an important part of modern transportation. Traditionally, physics-based models based on steady-state mapping of electric drives have been used to evaluate their behavior under transient conditions. Hardware-in-the-Loop (HIL) testing seeks to provide a more accurate representation of a component’s behavior under transient load conditions that are more representative of real world conditions it will operate under, without requiring a full vehicle installation. Oak Ridge National Laboratory (ORNL) developed such a HIL test platform capable of subjecting electric drives to both conventional steady-state test procedures as well as transient experiments such as vehicle drive cycles.
Journal Article

On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing

2017-03-28
2017-01-0950
The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directly monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications.
Technical Paper

Integration and Validation of a Thermal Energy Storage System for Electric Vehicle Cabin Heating

2017-03-28
2017-01-0183
It is widely recognized in the automotive industry that, in very cold climatic conditions, the driving range of an Electric Vehicle (EV) can be reduced by 50% or more. In an effort to minimize the EV range penalty, a novel thermal energy storage system has been designed to provide cabin heating in EVs and Plug-in Hybrid Electric Vehicles (PHEVs) by using an advanced phase change material (PCM). This system is known as the Electrical PCM-based Thermal Heating System (ePATHS) [1, 2]. When the EV is connected to the electric grid to charge its traction battery, the ePATHS system is also “charged” with thermal energy. The stored heat is subsequently deployed for cabin comfort heating during driving, for example during commuting to and from work. The ePATHS system, especially the PCM heat exchanger component, has gone through substantial redesign in order to meet functionality and commercialization requirements.
Technical Paper

Axial NO2 Utilization Measurements within a Partial Flow Filter during Passive Regeneration

2017-03-28
2017-01-0988
Measuring axial exhaust species concentration distributions within a wall-flow aftertreatment device provides unique and significant insights regarding the performance of complex devices like the SCR-on-filter. In this particular study, a less complex aftertreatment configuration which includes a DOC followed by two uncoated partial flow filters (PFF) was used to demonstrate the potential and challenges. The PFF design in this study was a particulate filter with alternating open and plugged channels. A SpaciMS [1] instrument was used to measure the axial NO2 profiles within adjacent open and plugged channels of each filter element during an extended passive regeneration event using a full-scale engine and catalyst system. By estimating the mass flow through the open and plugged channels, the axial soot load profile history could be assessed.
Journal Article

Evaluation of Fuel-Borne Sodium Effects on a DOC-DPF-SCR Heavy-Duty Engine Emission Control System: Simulation of Full-Useful Life

2016-10-17
2016-01-2322
For renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1001 h using 20% biodiesel blended into ultra-low sulfur diesel (B20) doped with 14 ppm Na. This Na level is equivalent to exposure to Na at the uppermost expected B100 value in a B20 blend for the system full-useful life. During the study, NOx emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement.
Book

Progress in Modeling and Simulation of Batteries

2016-06-15
Modeling and simulation of batteries, in conjunction with theory and experiment, are important research tools that offer opportunities for advancement of technologies that are critical to electric motors. The development of data from the application of these tools can provide the basis for managerial and technical decision-making. Together, these will continue to transform batteries for electric vehicles.
Technical Paper

Real-Time Engine and Aftertreatment System Control Using Fast Response Particulate Filter Sensors

2016-04-05
2016-01-0918
Radio frequency (RF)-based sensors provide a direct measure of the particulate filter loading state. In contrast to particulate matter (PM) sensors, which monitor the concentration of PM in the exhaust gas stream for on-board diagnostics purposes, RF sensors have historically been applied to monitor and control the particulate filter regeneration process. This work developed an RF-based particulate filter control system utilizing both conventional and fast response RF sensors, and evaluated the feasibility of applying fast-response RF sensors to provide a real-time measurement of engine-out PM emissions. Testing with a light-duty diesel engine equipped with fast response RF sensors investigated the potential to utilize the particulate filter itself as an engine-out soot sensor.
Technical Paper

Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

2016-04-05
2016-01-0248
Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating.
Book

Impacting Commercialization of Rapid Hydrogen Fuel Cell Electric Vehicles (FCEV)

2016-02-19
Alternative propulsion technologies are becoming increasingly important with the rise of stricter regulations for vehicle efficiency, emission regulations, and concerns over the sustainability of crude oil supplies. The fuel cell is a critical component of alternative propulsion systems, and as such has many aspects to consider in its design. Fuel cell electric vehicles (FCEVs) powered by proton-exchange membrane fuel cells (PEFC) and fueled by hydrogen, offer the promise of zero emissions with excellent driving range of 300-400 miles, and fast refueling times; two major advantages over battery electric vehicles (BEVs). FCEVs face several remaining major challenges in order to achieve widespread and rapid commercialization. Many of the challenges, especially those from an FCEV system and subsystem cost and performance perspective are addressed in this book.
X