Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Real-Time Measurement of Camshaft Wear in an Automotive Engine - a Radiometric Method

1990-10-01
902085
A radiometric method has been developed for the determination of camshaft wear during engine operation. After a radioactive tracer is induced at the tips of one or more cam lobes by the technique of surface layer activation, calibration procedure are performed to determine the amount of radioactive material remaining versus the depth worn. The decrease in γ-ray intensity measured external to the engine is then directly related to cam lobe wear. By incorporating a high-resolution detector and an internal radioactive standard,measurement accuracy better than ±0.2 μm at 95% confidence has been achieved. Without the requirement of engine disassembly, this method has provided unique measurements of break-in wear and wear as a function of operating conditions. Because this approach requires only low levels of radiation, it has significant potential applications in wear control.
Technical Paper

Automobile Radar Signature Studies

1975-02-01
750088
One of the prime requisites for automobile radar systems is obstacle hazard evaluation, the extent needed being dependent upon the particular system application. Much of the information necessary for a radar system to assess the degree of hazard of a target must come from characteristics which can be measured by the radar itself. While the hazard evaluation capacity has not yet been developed for automobile radar systems, research to provide this capability is in progress. Continuous wave (CW) scattering measurements have been made in a manner which is consistent with automobile radar operation. Various aspects of simple targets and of an automobile were measured in a microwave anechoic chamber. Both horizontal and vertical linear polarizations were transmitted and their co-linear and cross polarizations received. These data have been used to confirm the existence of and to understand certain scattering mechanisms.
Technical Paper

Electromagnetic Interference and the Automobile

1973-02-01
730129
This paper defines the overall problem of electromotive interference (EMI) from an automotive viewpoint. First, the general conditions (coupling modes) that apply within the automobile are described, then the automobile as a source of interference is examined. Performance criteria for electromagnetic automobile radiation limits as defined by various organizations are compared. Methods of measuring EMI are discussed, then the authors examine the environment both inside and outside of the automobile. Finally, the paper presents detailed test results of automotive impedance studies.
Technical Paper

Impact Tolerance and Response of the Human Thorax

1971-02-01
710851
At the 1970 SAE International Automobile Safety Conference, the first experimental chest impact results from a new, continuing biomechanics research program were presented and compared with earlier studies performed elsewhere by one of the authors using a different technique. In this paper, additional work from the current program is documented. The general objective remains unchanged: To provide improved quantification of injury tolerance and thoracic mechanical response (force-time, deflection-time, and force-deflection relationships) for blunt sternal impact to the human cadaver. Fourteen additional unembalmed specimens of both sexes (ranging in age from 19-81 years, in weight from 117-180 lb, and in stature from 5 ft 1-1/2 in to 6 ft) have been exposed to midsternal, blunt impacts using a horizontal, elastic-cord propelled striker mass. Impact velocities were higher than those of the previous work, ranging from 14-32 mph.
Technical Paper

Tolerance and Properties of Superficial Soft Tissues In Situ

1970-02-01
700910
Utilizing unembalmed cadaver test subjects, a series of tests was carried out to characterize quantitatively the resistance of the skin, the soft underlying tissue of the scalp, and certain other typical areas of the body to impact loading. The impacts were delivered by the use of an instrumented free-fall device similar to that previously employed for facial bone fracture experiments. In one group of tests, metal and glass edges were affixed to the impacting device to produce localized trauma under conditions which were standardized with respect to variables affecting the degree of the injury. In the second group of experiments, specimens of skin, together with underlying tissue of uniform thickness, were subjected to compressive impact between the parallel surfaces of the impacting weight and a heavy metal platen. From these latter experiments the force-time histories, coefficient of restitution, and hysteresis loops of load versus deflection were obtained for the specimens.
Technical Paper

V. I. Improvers and Engine Performance

1968-02-01
680071
The use of multigrade (V.I. improved) oils in automotive engines has increased significantly in recent years. However, the performance of these oils in terms of factors such as oil economy, wear, and noise, is not always equal to that of single grade oils. Although the initial viscosity of multigrade oils is related to both the base oil and the V.I. improver, the viscosity decreases with use, with the primary factors determining the magnitude of the change being the degree of shear and the characteristics and concentration of the V.I. improver used. This decrease in viscosity has been assumed to be the cause of the decreases in oil economy that may occur with oil use. However, viscosity changes are not believed to be the primary factor responsible since similar oil economy changes have also been observed for single grade oils. Nevertheless, the characteristics and concentration of the V.I. improver used can be a significant factor influencing oil economy.
Technical Paper

Energy Recovery Incentive for Regenerative Braking

1962-01-01
620143
This paper describes a computer study made by the General Motors Corp. Research Laboratories to determine what percentage of the energy supplied to the axle of a passenger car is available for recovery through regeneration. Several weight classes of passenger cars were studied using three driving schedules-city, suburban, and highway. For each vehicle run in accordance with the prescribed driving schedules, two ratio percentages were obtained: (1) the ratio of energy available for recovery to the total energy supplied to the axle, and (2) the above ratio modified by assumed efficiencies in the propulsion and regeneration systems.
Technical Paper

DEVELOPING TRANSAXLE FLUID

1960-01-01
600069
EXTENSIVE TESTING by GM Research Laboratories has screened five promising transaxle fluids out of 32 mineral-oil-base fluids, 10 synthetic-base fluids, and numerous additive-base stock combination fluids. This paper discusses the findings of the testing and the continuing program on the five fluids. Transaxle fluids have a number of properties affecting performance, including: High-temperature viscosity. Low-temperature fluidity. Shear resistance. Friction properties. Oxidation resistance. Antifoam quality. Effect on seals. Fluid-clutch plate compatibility. Antiwear quality. Extreme-pressure quality. Antirust and anticorrosion qualities.*
X