Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Spark Discharge Characteristics for Varying Spark Plug Geometries and Gas Compositions

2022-03-29
2022-01-0437
Spark discharge properties were studied and characterized for varying gas compositions and spark plug geometries using a spark calorimeter and constant volume optical vessel. Two different 18 mm natural gas engine spark plugs were used in the experiments. All measurements were recorded under quiescent conditions and with a spark gap of 0.30 mm. The spark plug calorimeter was used for measuring thermal energy deposition to the gas for gas compositions of nitrogen, a stoichiometric mixture of nitrogen and methane, a stoichiometric mixture of nitrogen and methane diluted with 30% carbon dioxide by volume, and for air. Other measurements of interest included breakdown voltage, electrical energy delivered to the spark gap, electrical-to-thermal energy conversion efficiency, and spark duration, for pressures up to 28 bar at 300 K. The optical vessel was used for the combusting mixture of stoichiometric air and methane at pressures up to 28 bar.
Technical Paper

Improving Heavy-Duty Engine Efficiency and Durability: The Rotating Liner Engine

2005-04-11
2005-01-1653
The Rotating Linear Engine (RLE) derives improved fuel efficiency and decreased maintenance costs via a unique lubrication design, which decreases piston assembly friction and the associated wear for heavy-duty natural gas and diesel engines. The piston ring friction exhibited on current engines accounts for 1% of total US energy consumption. The RLE is expected to reduce this friction by 50-70%, an expectation supported by hot motoring and tear-down tests on the UT single cylinder RLE prototype. Current engines have stationary liners where the oil film thins near the ends of the stroke, resulting in metal-to-metal contact. This metal-to-metal contact is the major source of both engine friction and wear, especially at high load. The RLE maintains an oil film between the piston rings and liner throughout the piston stroke due to liner rotation. This assumption has also been confirmed by recent testing of the single cylinder RLE prototype.
Technical Paper

A New Ignitior for Large-Bore Natural Gas Engines - Railplug Design Improvement and Optimization

2005-04-11
2005-01-0249
It is a very challenging problem to reliably ignite extremely lean mixtures, especially for the low speed, high load conditions of large-bore natural gas engines. If these engines are to be use for the distributed power generation market, it will require operation with higher boost pressures and even leaner mixtures. Both place greater demands on the ignition system. The railplug is a very promising ignition system for lean burn natural gas engines with its high-energy deposition and high velocity plasma arc. It requires care to properly design railplugs for this new application, however. For these engines, in-cylinder pressure and mixture temperature are very high at the time of ignition due to the high boost pressure. Hot spots may exist on the electrodes of the ignitor, causing pre-ignition problems. A heat transfer model is proposed in this paper to aid the railplug design. The electrode temperature was measured in an operating natural gas engine.
Technical Paper

Effects of Fuel Parameters on FTP Emissions of a 1998 Toyota with a Direct Injection Spark Ignition Engine

2000-06-19
2000-01-1907
The effects of fuel properties on the emissions of a production vehicle with a gasoline direct injection engine operating over the Federal Test Procedure (FTP) cycle were investigated. The vehicle used was a 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine. Engine-out and tailpipe FTP emissions for six fuels and a California Phase 2 RFG reference fuel are presented. Four of the test fuels were blended from refinery components to meet specified distillation profiles. The remaining test fuels were iso-octane and toluene, an iso-alkane and an aromatic with essentially the same boiling point (at atmospheric pressure) that is near the T50 point for the blended fuels. Statistically significant effects, at the 95% confidence level, of the fuels on tailpipe emissions were found. Correlations were sought between the properties of the five blends and the Emissions Indices for engine-out hydrocarbons and NOx and for tailpipe particulates.
Technical Paper

The Effects of Fuel Composition, System Design, and Operating Conditions on In-System Vaporization and Hot Start of a Liquid-Phase LPG Injection System

1998-05-04
981388
A liquid-phase port injection system for liquefied petroleum gas (LPG) generally consists of a fuel storage tank with extended capability of operating up to 600 psi, a fuel pump, and suitable fuel lines to and from the LPG fuel injectors mounted in the fuel rail manifold. Port injection of LPG in the liquid phase is attractive due to engine emissions and performance benefits. However, maintaining the LPG in the liquid phase at under-hood conditions and re-starting after hot soak can be difficult. Multiphase behavior within a liquid-phase LPG injection system was investigated computationally and experimentally. A commercial chemical equilibrium code (ASPEN PLUS™) was used to model various LPG compositions under operating conditions.
Technical Paper

Measurements of Local In-Cylinder Fuel Concentration Fluctuations in a Firing SI Engine

1997-05-01
971644
The cycle-resolved fuel concentration near the spark plug in a firing SI engine has been measured using an infrared fiber optic instrumented spark plug probe. The probe can measure in-cylinder concentrations of hydrocarbons in the pre-combustion regions of the engine cycle and give qualitative results for unburned hydrocarbons in the post-combustion regions. The device consists of a spark plug body that has been modified to accept a pair of sapphire optical fibers in addition to a spark electrode. Radiation from an infrared source is coupled into one fiber and reflected from a minor on the spark plug ground electrode to the other fiber which carries the signal to a detector and data acquisition system. The probe measures the attenuation of the infrared radiation transmitted through a region in the vicinity of the spark gap. The attenuation results from the absorption of radiation by the fuel. The measurements were made in a CFR engine at 600 rpm using propane fuel.
Technical Paper

An Energy Efficient Electromagnetic Active Suspension System

1997-02-24
970385
The technology thrust to develop an effective electromagnetic actuator for application in an active suspension system has precipitated a fresh look at the active control schemes in an effort to reduce the required force levels of the actuator. The resulting “near constant force” control algorithm is described and its ability to greatly reduce vehicle sprung mass motion is documented through simulation and single wheel station laboratory test stand results. The vehicle power and energy requirements associated with this unwanted vehicle vertical are analyzed and comparisons between the corresponding passive and active systems are presented. The success of the active system leads naturally to the conclusion that a passive suspension equipped vehicle will become power limited at a much lower speed than will this active system when traversing severe cross-country terrain.
Technical Paper

A Fractal-Based SI Engine Model: Comparisons of Predictions with Experimental Data

1991-02-01
910079
A quasidimensional engine simulation which uses the concepts of fractal geometry to model the effects of turbulence on flame propagation in a homogeneous charge SI engine has been developed. Heat transfer and blowby/crevice flow submodels are included in this code and the submodels chosen are found to be reasonable. The model predictions of cylinder pressure histories are then compared with experimental data over a range of loads, equivalence ratios, and engine speeds. The model is not adjusted in any manner to yield better agreement with the data, other than by tuning the simple turbulence model used so as to yield agreement with data for the nonreacting flow. However, current information about the flame wrinkling scales in an engine is inadequate. Therefore, predictions are made for three different assumptions about the flame wrinkling scales which span the range of physically possible scales.
Technical Paper

The Design and Fabrication of “Texas Native Sun”, The University of Texas Entry in G.M. Sunrayce U.S.A., a Solar Powered Vehicle Race Across the United States

1990-08-01
901515
A team of student engineers at the University of Texas at Austin has designed and built “Texas Native Sun”, a solar powered vehicle for competition in GM Sunrayce U.S.A. The single-seat vehicle uses conventional photovoltaic solar cells to produce electricity for vehicle propulsion. The vehicle features graphite/epoxy composite monocoque construction, a high power-density permanent magnet electric motor, a mechanical/hydraulic continuously variable transmission, nickel-hydrogen satellite batteries, and a composite leaf spring suspension. The race strategies and tactics of energy management are optimized through use of a computer code which simulates the vehicle under race conditions. Much of the technology employed in the vehicle may one day become an ordinary part of future transportation systems which seek greater energy efficiency and less damage to the environment.
X