Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Simulated Real-World Energy Impacts of a Thermally Sensitive Powertrain Considering Viscous Losses and Enrichment

2015-04-14
2015-01-0342
It is widely understood that cold ambient temperatures increase vehicle fuel consumption due to heat transfer losses, increased friction (increased viscosity lubricants), and enrichment strategies (accelerated catalyst heating). However, relatively little effort has been dedicated to thoroughly quantifying these impacts across a large set of real world drive cycle data and ambient conditions. This work leverages experimental dynamometer vehicle data collected under various drive cycles and ambient conditions to develop a simplified modeling framework for quantifying thermal effects on vehicle energy consumption. These models are applied over a wide array of real-world usage profiles and typical meteorological data to develop estimates of in-use fuel economy. The paper concludes with a discussion of how this integrated testing/modeling approach may be applied to quantify real-world, off-cycle fuel economy benefits of various technologies.
Technical Paper

Analysis of Performance Results from FutureTruck 2001

2002-03-04
2002-01-1209
The 2001 FutureTruck competition involved 15 universities from across North America that were invited to apply a wide range of advanced technologies to improve energy efficiency and reduce greenhouse gas impact while producing near-zero regulated exhaust emissions in a 2000 Chevrolet Suburban. The modified vehicles designated as FutureTrucks demonstrated improvements in greenhouse gas emissions, tailpipe emissions, and over-the-road fuel economy compared with the stock vehicle on which they were based. The technologies represented in the vehicles included ICE-engines and fuel cell hybrid electric vehicle propulsion systems, a range of conventional and alternative fuels, advanced exhaust emissions controls, and light weighting technologies.
Technical Paper

In-Situ Mapping and Analysis of the Toyota Prius HEV Engine

2000-08-21
2000-01-3096
The Prius is a major achievement by Toyota: it is the first mass-produced HEV with the first available HEV-optimized engine. Argonne National Laboratory's Advanced Powertrain Test Facility has been testing the Prius for model validation and technology performance and assessment. A significant part of the Prius test program is focused on testing and mapping the engine. A short-length torque sensor was installed in the powertrain in-situ. The torque sensor data allow insight into vehicle operational strategy, engine utilization, engine efficiency, and specific emissions. This paper describes the design and process necessary to install a torque sensor in a vehicle and shows the high-fidelity data measured during chassis dynamometer testing. The engine was found to have a maximum thermodynamic efficiency of 36.4%. Emissions and catalyst efficiency maps were also produced.
Technical Paper

Development of a Low-Emission, Dedicated Ethanol-Fuel Vehicle with Cold-Start Distillation System

1999-03-01
1999-01-0611
This paper discusses the design and strategy for conversion of a vehicle to dedicated E85 (85% ethanol, 15% indolene clear) operation for participation in the 1998 Ethanol Vehicle Challenge by the University of California, Riverside. The primary focus of the design consists of: Development of a -7°C cold starting system utilizing a distillation process. Development of a close-coupled catalyst and secondary air injection system to decrease FTP cold start emissions. This paper begins with a theoretical description and design of a novel distillation system that can provide gasoline- enriched fuel for starting in cold weather. This is followed by a description of modifications to the engine, emission control system, and other vehicle components. Modifications included engine changes to increase thermal efficiency, to improve handling, and to reduce friction. Suspension modifications were made to improve handling.
X