Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Overview of an Assurance Process of Immunity of Embedded Electronic Systems to Single Event Upsets Caused by Ionizing Particles

2013-10-07
2013-36-0535
The aerospace and automotive electronic systems are getting more complex and/or highly integrated, as defined by ARP 4754A, making extensive use of microelectronics and digital memories which, in turn, operates in higher frequencies and lower voltages. In addition, the aircraft are flying in higher altitudes, and polar routes are getting more frequent. These factors raise the probability of occurrence of hazardous effects like the Single Event Upsets in their embedded electronic systems. These must be designed in a way to tolerate and assure the immunity to the Single Event Upsets, based upon criteria such as reliability, availability and criticality. This paper proposes an overview of an assurance process of immunity of embedded electronic systems to Single Event Upsets caused by ionizing particles by means of a review of literature and an analysis of standards as ECSS-E-ST-10-1, NASA Single Event Effects Criticality Analysis and IEC TS 62396-1.
Technical Paper

Current Trends Driving the Aerospace and Automotive Systems Architectures

2011-10-04
2011-36-0387
In this work we discuss current trends driving the aerospace and automotive systems architectures. This includes trends as: 1) pos-globalization and regionalization; 2) the formation of knowledge oligopolies; 3) commonality, standardization and even synergy (of components, tools, development process, certification agents, standards); 4) reuse and scalability; 5) synergy of knowledge and tools convergence; 6) time, cost and quality pressures and innovation speed; 7) environmental and safety issues; and 8) abundance of new technologies versus scarcity of skilled manpower to apply them.
Technical Paper

Distributed Simulation of the Longitudinal Mode of an Aircraft by Using the DoD High Level Architecture (HLA)

2008-10-07
2008-36-0299
This work presents the distributed simulation of the longitudinal mode of an aircraft by using the DoD High Level Architecture (HLA). The HLA is a general-purpose architecture for simulation reuse and interoperability. This architecture was developed under the leadership of the Defense Modeling and Simulation Office (DMSO) to support reuse and interoperability across the large numbers of different types of simulations developed and maintained by the DoD. To do this, the transfer function of the longitudinal mode of a hypothetical aircraft was implemented by means of a SystemBuild/MATRIXx model. The output of this model was connected to a Run-Time Infrastructure (RTI) and monitored on a remote computer. The connection between the model and the RTI was implemented by using a wrapper which was developed in C++. The HLA RTI implementation used in this work was the poRTIco.
X