Refine Your Search

Topic

Search Results

Journal Article

Unveiling the Potential of Hydrogen in a Downsized Gasoline Direct Injection Engine Performance and Emissions Experimental Study

2024-05-11
Abstract The transportation sector’s growing focus on addressing environmental and sustainable energy concerns has led to a pursuit of the decarbonization path. In this context, hydrogen emerges as a promising zero-carbon fuel. The ability of hydrogen fuel to provide reliable performance while reducing environmental impact makes it crucial in the quest for net zero targets. This study compares gasoline and hydrogen combustion in a single-cylinder boosted direct injection (DI) spark ignition engine under various operating conditions. Initially, the engine was run over a wide range of lambda values to determine the optimal operating point for hydrogen and demonstrate lean hydrogen combustion’s benefits over gasoline combustion. Furthermore, a load sweep test was conducted at 2000 rpm, and the performance and emission results were compared between gasoline and optimized hydrogen combustion. An in-depth analysis was conducted by varying fuel injection time and pressure.
Journal Article

Experimental Analysis of Heat Transfer Post Quenching of Medium Carbon Steel

2024-05-08
Abstract Transient temperature analysis is involved in the thermal simulation of the heat treatment process, in which the hot metal temperature changes with respect to time from an initial state to the final state. The critical part of the simulation is to determine the heat transfer coefficient (HTC) between the hot part and the quenching medium or quenchant. In liquid quenching, the heat transfer between the hot metal part and water becomes complicated and it is difficult to determine HTC. In the current experimentation a medium carbon steel EN 9 rod with a diameter of 50 mm and length 100 mm was quenched in water and ethylene glycol mixture with different concentrations. A part model was created; meshed and actual boundary conditions were applied to conduct computational fluid dynamics (CFD) analysis. In order to validate CFD analysis the experimental trials were conducted.
Journal Article

Optimizing Fuel Injection Timing for Multiple Injection Using Reinforcement Learning and Functional Mock-up Unit for a Small-bore Diesel Engine

2024-05-03
Abstract Reinforcement learning (RL) is a computational approach to understanding and automating goal-directed learning and decision-making. The difference from other computational approaches is the emphasis on learning by an agent from direct interaction with its environment to achieve long-term goals [1]. In this work, the RL algorithm was implemented using Python. This then enables the RL algorithm to make decisions to optimize the output from the system and provide real-time adaptation to changes and their retention for future usage. A diesel engine is a complex system where a RL algorithm can address the NOx–soot emissions trade-off by controlling fuel injection quantity and timing. This study used RL to optimize the fuel injection timing to get a better NO–soot trade-off for a common rail diesel engine. The diesel engine utilizes a pilot–main and a pilot–main–post-fuel injection strategy.
Journal Article

Determination of Air–Fuel Ratio at 1 kHz via Mid-Infrared Laser Absorption and Fast Flame Ionization Detector Measurements in Engine-Out Vehicle Exhaust

2024-04-29
Abstract Measurements of air–fuel ratio (AFR) and λ (AFRactual/AFRstoich) are crucial for understanding internal combustion engine (ICE) performance. However, current λ sensors suffer from long light-off times (on the order of seconds following a cold start) and limited time resolution. In this study, a four-color mid-infrared laser absorption spectroscopy (LAS) sensor was developed to provide 5 kHz measurements of temperature, CO, CO2, and NO in engine-out exhaust. This LAS sensor was then combined with 1 kHz hydrocarbon (HC) measurements from a flame ionization detector (FID), and the Spindt exhaust gas analysis method to provide 1 kHz measurements of λ. To the authors’ knowledge, this is the first time-resolved measurement of λ during engine cold starts using the full Spindt method. Three tests with various engine AFR calibrations were conducted and analyzed: (1) 10% lean, (2) stoichiometric, and (3) 10% rich.
Journal Article

Computational Fluid Dynamics Process for Front Windshield Mist Deposition and Its Subsequent Demisting

2024-04-29
Abstract A vehicle’s heating, ventilation, and air-conditioning system plays a dual role in passenger thermal comfort and safety. The functional aspects of safety include the front windshield demist and deicing feature of the system. The thin-film mist is a result of condensation of water vapor on the inner side of the windshield, which occurs at low ambient temperatures or high humidity. This mist deposition depends on the air saturation pressure at the front windshield. Indian regulation AIS-084 defines the experimental setup for testing, which encompasses both the mist deposition and its subsequent demist process. This regulation mandates testing, which occurs at a later stage of product development. This performance validation can be performed using a three-dimensional computational fluid dynamics approach. Current work summarizes the simulation process for both the mist deposition and the subsequent demisting phenomenon.
Journal Article

A Virtual Calibration Strategy and Its Validation for Large-Scale Models of Multi-Sheet Self-Piercing Rivet Connections

2024-04-29
Abstract This article presents a strategy for the virtual calibration of a large-scale model representing a self-piercing rivet (SPR) connection. The connection is formed between a stack of three AA6016-T4 aluminum sheets and one SPR. The calibration process involves material characterization, a detailed riveting process simulation, virtual joint unit tests, and the final large-scale model calibration. The virtual tests were simulated by detailed solid element FE models of the joint unit. These detailed models were validated using experimental tests, namely peeling, single-lap joint, and cross-tests. The virtual parameter calibration was compared to the experimental calibration and finally applied to component test simulations. The article contains both experiments and numerical models to characterize the mechanical behavior of the SPR connection under large deformation and failure.
Journal Article

Combustion Analysis of Active Pre-Chamber Design for Ultra-Lean Engine Operation

2024-04-27
Abstract In this article, the effects of mixture dilution using EGR or excessive air on adiabatic flame temperature, laminar flame speed, and minimum ignition energy are studied to illustrate the fundamental benefits of lean combustion. An ignition system developing a new active pre-chamber (APC) design was assessed, aimed at improving the indicated thermal efficiency (ITE) of a 1.5 L four-cylinder gasoline direct injection (GDI) engine. The engine combustion process was simulated with the SAGE detailed chemistry model within the CONVERGE CFD tool, assuming the primary reference fuel (PRF) to be a volumetric mixture of 93% iso-octane and 7% n-heptane. The effects of design parameters, such as APC volume, nozzle diameter, and nozzle orientations, on ITE were studied. It was found that the ignition jet velocity from the pre-chamber to the main chamber had a significant impact on the boundary heat losses and combustion phasing.
Journal Article

Optimized Emission Analysis in Hydrogen Internal Combustion Engines: Fourier Transform Infrared Spectroscopy Innovations and Exhaust Humidity Analysis

2024-04-23
Abstract In today’s landscape, environmental protection and nature conservation have become paramount across industries, spurring the ever-increasing aspect of decarbonization. Regulatory measures in transportation have shifted focus away from combustion engines, making way for electric mobility, particularly in smaller engines. However, larger applications like ships and stationary power generation face limitations, not enabling an analogous shift to electrification. Instead, the emphasis shifted to zero-carbon fuel alternatives such as hydrogen and ammonia. In addition to minimal carbon-containing emissions due to incineration of lubricating oil, hydrogen combustion with air results in nitrogen oxide emissions, still necessitating quantification for engine operation compliance with legal regulations.
Journal Article

Dimethyl Ether Biogas Reactivity-Controlled Compression Ignition for Sustainable Power Generation with Low Nitrogen Oxide Emissions

2024-04-22
Abstract Biogas (60% methane–40% CO2 approximately) can be used in the reactivity-controlled compression ignition (RCCI) mode along with a high-reactivity fuel (HRF). In this work dimethyl ether (DME) that can also be produced from renewable sources was used as the HRF as a move toward sustainable power generation. The two-cylinder turbocharged diesel engine modified to work in the DME–biogas RCCI (DMB-RCCI) mode was studied under different proportions of methane (45–95%) in biogas since the quality of this fuel can vary depending on the feedstock and production method. Only a narrow range of biogas to DME ratios could be tolerated in this mode at each output without misfire or knock. Detailed experiments were conducted at brake mean effective pressures (BMEPs) of 3 and 5 bar at a speed of 1500 rpm and comparisons were made with the diesel–biogas dual-fuel and diesel–biogas RCCI modes under similar methane flow rates while the proportion of CO2 was varied.
Journal Article

Comparison of Tabulated and Complex Chemistry Approaches for Ammonia–Diesel Dual-Fuel Combustion Simulation

2024-04-18
Abstract Using ammonia as a carbon-free fuel is a promising way to reduce greenhouse gas emissions in the maritime sector. Due to the challenging fuel properties, like high autoignition temperature, high latent heat of vaporization, and low laminar flame speeds, a dual-fuel combustion process is the most promising way to use ammonia as a fuel in medium-speed engines. Currently, many experimental investigations regarding premixed and diffusive combustion are carried out. A numerical approach has been employed to simulate the complex dual-fuel combustion process to better understand the influences on the diffusive combustion of ammonia ignited by a diesel pilot. The simulation results are validated based on optical investigations conducted in a rapid compression–expansion machine (RCEM). The present work compares a tabulated chemistry simulation approach to complex chemistry-based simulations.
Journal Article

A Design Optimization Process of Improving the Automotive Subframe Dynamic Stiffness Using Tuned Rubber Mass Damper

2024-04-18
Abstract Automotive subframe is a critical chassis component as it connects with the suspension, drive units, and vehicle body. All the vibration from the uneven road profile and drive units are passed through the subframe to the vehicle body. OEMs usually have specific component-level drive point dynamic stiffness (DPDS) requirements for subframe suppliers to achieve their full vehicle NVH goals. Traditionally, the DPDS improvement for subframes welded with multiple stamping pieces is done by thickness and shape optimization. The thickness optimization usually ends up with a huge mass penalty since the stamping panel thickness has to be changed uniformly not locally. Structure shape and section changes normally only work for small improvements due to the layout limitations. Tuned rubber mass damper (TRMD) has been widely used in the automotive industry to improve the vehicle NVH performance thanks to the minimum mass it adds to the original structure.
Journal Article

Research on Speed Guidance Strategy at Continuous Signal Intersection Based on Vehicle–Road Coordination Technology

2024-04-13
Abstract With the rapid growth of automobile ownership, traffic congestion has become a major concern at intersections. In order to alleviate the blockage of intersection traffic flow caused by signals, reduce the length of vehicle congestion and waiting time, and for improving the intersection access efficiency, therefore, this article proposes a vehicle speed guidance strategy based on the intersection signal change by combining the vehicle–road cooperative technology. The randomness of vehicle traveling speed in the road is being considered. According to the vehicle traveling speed, a speed guidance model is established under different conditions.
Journal Article

Suitability Study of Biofuel Blend for Light Commercial Vehicle Application under Real-World Transient Operating Conditions

2024-04-10
Abstract Driving schedule of every vehicle involves transient operation in the form of changing engine speed and load conditions, which are relatively unchanged during steady-state conditions. As well, the results from transient conditions are more likely to reflect the reality. So, the current research article is focused on analyzing the biofuel-like lemon peel oil (LPO) behavior under real-world transient conditions with fuel injection parameter MAP developed from steady-state experiments. At first, engine parameters and response MAPs are developed by using a response surface methodology (RSM)-based multi-objective optimization technique. Then, the vehicle model has been developed by incorporating real-world transient operating conditions. Finally, the developed injection parameters and response MAPs are embedded in the vehicle model to analyze the biofuel behavior under transient operating conditions.
Journal Article

Bayesian Network Model and Causal Analysis of Ship Collisions in Zhejiang Coastal Waters

2024-04-10
Abstract For taking counter measures in advance to prevent accidental risks, it is of significance to explore the causes and evolutionary mechanism of ship collisions. This article collects 70 ship collision accidents in Zhejiang coastal waters, where 60 cases are used for modeling while 10 cases are used for verification (testing). By analyzing influencing factors (IFs) and causal chains of accidents, a Bayesian network (BN) model with 19 causal nodes and 1 consequential node is constructed. Parameters of the BN model, namely the conditional probability tables (CPTs), are determined by mathematical statistics methods and Bayesian formulas. Regarding each testing case, the BN model’s prediction on probability of occurrence is above 80% (approaching 100% indicates the certainty of occurrence), which verifies the availability of the model. Causal analysis based on the backward reasoning process shows that H (Human error) is the main IF resulting in ship collisions.
Journal Article

An Overview of Motion-Planning Algorithms for Autonomous Ground Vehicles with Various Applications

2024-04-03
Abstract With the rapid development and the growing deployment of autonomous ground vehicles (AGVs) worldwide, there is an increasing need to design reliable, efficient, robust, and scalable motion-planning algorithms. These algorithms are crucial for fulfilling the desired goals of safety, comfort, efficiency, and accessibility. To design optimal motion-planning algorithms, it is beneficial to explore existing techniques and make improvements by addressing the limitations of associated techniques, utilizing hybrid algorithms, or developing novel strategies. This article categorizes and overviews numerous motion-planning algorithms for AGVs, shedding light on their strengths and weaknesses for a comprehensive understanding.
Journal Article

Modeling Approach for Hybrid Integration of Renewable Energy Sources with Vehicle-to-Grid Technology

2024-03-29
Abstract This article presents a technical study on the integration of hybrid renewable energy sources (RES) with vehicle-to-grid (V2G) technology, aiming to enhance energy efficiency, grid stability, and mitigating power imbalances. The growing adoption of RES and electric vehicles (EV) necessitates innovative solutions to mitigate intermittency and optimize resource utilization. The study’s primary objective is to design and analyze a hybrid distribution generation system encompassing solar photovoltaic (PV) and wind power stations, along with a conventional diesel generator, connected to the utility grid. A V2G system is strategically embedded within the microgrid to facilitate bidirectional power exchange between EV and the grid. Methodologically, MATLAB/Simulink® 2021a is employed to simulate the system’s performance over one day.
Journal Article

State of Charge Balancing Control for Multiple Output Dynamically Adjustable Capacity System

2024-03-28
Abstract A multiple output dynamically adjustable capacity system (MODACS) is developed to provide multiple voltage output levels while supporting varying power loads by switching multiple battery strings between serial and parallel connections. Each module of the system can service either a low voltage bus by placing its strings in parallel or a high voltage bus with its strings in series. Since MODACS contains several such modules, it can produce multiple voltages simultaneously. By switching which strings and modules service the different output rails and by varying the connection strategy over time, the system can balance the states of charge (SOC) of the strings and modules. A model predictive control (MPC) algorithm is formulated to accomplish this balancing. MODACS operates in various power modes, each of which imposes unique constraints on switching between configurations.
Journal Article

A Diesel Engine Ring Pack Performance Assessment

2024-03-23
Abstract Demonstrating ring pack operation in an operating engine is very difficult, yet it is essential to optimize engine performance parameters such as blow-by, oil consumption, emissions, and wear. A significant amount of power is lost in friction between piston ring–cylinder liner interfaces if ring pack parameters are not optimized properly. Thus, along with these parameters, it is also necessary to reduce friction power loss in modern internal combustion engines as the oil film thickness formed between the piston ring and liner is vital for power loss reduction due to friction. Hence, it has also been a topic of research interest for decades. Piston and ring dynamics simulation software are used extensively for a better ring pack design. In this research work, a similar software for piston ring dynamics simulation reviews the ring pack performance of a four-cylinder diesel engine.
Journal Article

Microstructural and Corrosion Behavior of Thin Sheet of Stainless Steel-Grade Super Duplex 2507 by Gas Tungsten Arc Welding

2024-03-21
Abstract Super duplex stainless steel (SDSS) is a type of stainless steel made of chromium (Cr), nickel (Ni), and iron (Fe). In the present work, a 1.6 mm wide thin sheet of SDSS is joined using gas tungsten arc welding (GTAW). The ideal parameter for a bead-on-plate trial is found, and 0.216 kJ/mm of heat input is used for welding. As an outcome of the welding heating cycle and subsequent cooling, a microstructural study revealed coarse microstructure in the heat-affected zone and weld zone. The corrosion rate for welded joints is 9.3% higher than the base metal rate. Following the corrosion test, scanning electron microscope (SEM) analysis revealed that the welded joint’s oxide development generated a larger corrosive attack on the weld surface than the base metal surface. The percentages of chromium (12.5%) and molybdenum (24%) in the welded joints are less than those in the base metal of SDSS, as per energy dispersive X-ray (EDX) analysis.
Journal Article

How Drivers Lose Control of the Car

2024-03-06
Abstract After a severe lane change, a wind gust, or another disturbance, the driver might be unable to recover the intended motion. Even though this fact is known by any driver, the scientific investigation and testing on this phenomenon is just at its very beginning, as a literature review, focusing on SAE Mobilus® database, reveals. We have used different mathematical models of car and driver for the basic description of car motion after a disturbance. Theoretical topics such as nonlinear dynamics, bifurcations, and global stability analysis had to be tackled. Since accurate mathematical models of drivers are still unavailable, a couple of driving simulators have been used to assess human driving action. Classic unstable motions such as Hopf bifurcations were found. Such bifurcations seem almost disregarded by automotive engineers, but they are very well-known by mathematicians. Other classic unstable motions that have been found are “unstable limit cycles.”
X