Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Software-supported Processes for Aerodynamic Homologation of Vehicles

2024-07-02
2024-01-3004
Homologation is an important process in vehicle development and aerodynamics a main data contributor. The process is heavily interconnected: Production planning defines the available assemblies. Construction defines their parts and features. Sales defines the assemblies offered in different markets, where Legislation defines the rules applicable to homologation. Control engineers define the behavior of active, aerodynamically relevant components. Wind tunnels are the main test tool for the homologation, accompanied by surface-area measurement systems. Mechanics support these test operations. The prototype management provides test vehicles, while parts come from various production and prototyping sources and are stored and commissioned by logistics. Several phases of this complex process share the same context: Production timelines for assemblies and parts for each chassis-engine package define which drag coefficients or drag coefficient contributions shall be determined.
Technical Paper

Fuel Cell Fault Simulation and Detection for On Board Diagnostics using Real-Time Digital Twins

2024-06-12
2024-37-0014
The modern automotive industry is facing challenges of ever-increasing complexity in the electrified powertrain era. On-board diagnostic (OBD) systems must be thoroughly validated and calibrated through many iterations to function effectively and meet the regulation standards. Their development and design process are more complex when prototype hardware is not available and therefore virtual testing is a prominent solution, including Software-in-the-loop (SiL) and Hardware-in-the-loop (HIL) simulations. Virtual prototype testing relying on real-time simulation models is necessary to design and test new era’s OBD systems quickly and in scale. The new fuel cell powertrain involves new and preciously unexplored fail modes. To make the system robust, simulations are required to be carried out to identify different fails.
Technical Paper

A Study on RANC Technique for Server-based Control Filter Optimization

2024-06-12
2024-01-2960
Broadband active noise control algorithms require high-performance so multi-channel control to ensure high performance, which results in very high computational power and expensive DSP. When the control filter update part need a huge computational power of the algorithm is separated and calculated by the server, it is possible to reduce cost by using a low-cost DSP in a local vehicle, and a performance improvement algorithm requiring a high computational power can be applied to the server. In order to achieve the above goal, this study analyzed the maximum delay time when communication speed is low and studied response measures to ensure data integrity at the receiving location considering situations where communication speed delay and data errors occur.
Technical Paper

Artificial Neural Network for Airborne Noise Prediction of a Diesel Engine

2024-06-12
2024-01-2929
The engine acoustic character has always represented the product DNA, owing to its strong correlation with in-cylinder pressure gradient, components design and perceived quality. Best practice for engine acoustic characterization requires the employment of a hemi-anechoic chamber, a significant number of sensors and special acoustic insulation for engine ancillaries and transmission. This process is highly demanding in terms of cost and time due to multiple engine working points to be tested and consequent data post-processing. Since Neural Networks potentially predicting capabilities are apparently un-exploited in this research field, the following paper provides a tool able to acoustically estimate engine performance, processing system inputs (e.g. Injected Fuel, Rail Pressure) thanks to the employment of Multi Layer Perceptron (MLP, a feed forward Network working in stationary points).
Technical Paper

Development of an Autonomous Blimp (Airship) for Indoor Navigation

2024-06-01
2024-26-0436
Uncrewed Aerial vehicles are useful for a multitude of applications in today’s age, covering a wide variety of fields such as defense, environmental science, meteorology, emergency responders, search and rescue operations, entertainment robotics, etc. Different types of aircrafts such as fixed wing UAVs, rotor wing UAVs are used for the mentioned applications depending upon the application requirements. One such category of UAVs is the lighter-than-air aircrafts, that provide their own set of advantages over the other types of UAVs. Blimps are among the participants of the lighter-than-air category that are expected to offer advantages such as higher endurance and range, and safer and more comfortable Human-machine-Interaction, etc. as compared to fixed wing and rotor wing UAVs due to their design. A ROS (Robot Operating System) based control system was developed for controlling the blimp.
Technical Paper

Enhancing Lateral Stability in Adaptive Cruise Control: A Takagi-Sugeno Fuzzy Model-Based Strategy

2024-04-09
2024-01-1962
Adaptive cruise control is one of the key technologies in advanced driver assistance systems. However, improving the performance of autonomous driving systems requires addressing various challenges, such as maintaining the dynamic stability of the vehicle during the cruise process, accurately controlling the distance between the ego vehicle and the preceding vehicle, resisting the effects of nonlinear changes in longitudinal speed on system performance. To overcome these challenges, an adaptive cruise control strategy based on the Takagi-Sugeno fuzzy model with a focus on ensuring vehicle lateral stability is proposed. Firstly, a collaborative control model of adaptive cruise and lateral stability is established with desired acceleration and additional yaw moment as control inputs. Then, considering the effect of the nonlinear change of the longitudinal speed on the performance of the vehicle system.
Technical Paper

An Improved AEB Control System Based on Risk Factors with Consideration of Vehicle Stability

2024-04-09
2024-01-2331
Intelligent vehicle-to-everything connectivity is an important development trend in the automotive industry. Among various active safety systems, Autonomous Emergency Braking (AEB) has garnered widespread attention due to its outstanding performance in reducing traffic accidents. AEB effectively avoids or mitigates vehicle collisions through automatic braking, making it a crucial technology in autonomous driving. However, the majority of current AEB safety models exhibit limitations in braking modes and fail to fully consider the overall vehicle stability during braking. To address these issues, this paper proposes an improved AEB control system based on a risk factor (AERF). The upper-level controller introduces the risk factor (RF) and proposes a multi-stage warning/braking control strategy based on preceding vehicle dynamic characteristics, while also calculating the desired acceleration.
Technical Paper

Modeling and Time Discrete Characteristics Analysis of the Oil Filling Process of Wet Clutch for a Specialized Vehicle’s Automatic Transmission

2024-04-09
2024-01-2284
The automatic transmission of a specialized vehicle encountered challenges in achieving stable oil filling time due to the considerable variability of related parameters and the non-linear trends in the variation of individual product parameters over time. To investigate the underlying causes of this phenomenon and enhance the oil filling efficiency, a detailed model of the clutch oil filling process during gear shifting was established in this paper, which included dynamic models of the key components such as the hydraulic system, clutch, proportional valve, and oil passages. Physical experiments were performed on the test bench to compare with the simulation results. The results showed that the correlation between the simulation model and the test bench was well, which verified the effectiveness of the simulation model.
Technical Paper

Research on the Control Strategy of Electric Vehicle Active Suspension Based on Fuzzy Theory

2024-04-09
2024-01-2290
The performance of suspension system has a direct impact on the riding comfort and smoothness. For the traditional suspension can not effectively alleviate the impact of road surface and the poor anti-vibration performance, The dynamics model of vehicle suspension system is established, and the control model of vehicle four-degree-of-freedom active suspension is designed with fuzzy control strategy. On this basis, a comprehensive simulation model of the control model of vehicle active suspension coupled with road excitation is established. and the ride comfort of vehicles under different types of suspension are tested through Simulink. The simulation results show that compared with the passive suspension, the reduction of vehicle acceleration and dynamic deformation of the active suspension controlled by fuzzy PID can reach 33.76% and 22.45%. and the reduction of pitch Angle speed and dynamic load of the active suspension controlled by fuzzy PID can reach 16.18% and 10.72%.
Technical Paper

A Path Tracking Method for an Unmanned Bicycle Based on the Body-Fixed Coordinate Frame

2024-04-09
2024-01-2303
The present study introduces a novel approach for achieving path tracking of an unmanned bicycle in its local body-fixed coordinate frame. A bicycle is generally recognized as a multibody system consisting of four distinct rigid bodies, namely the front wheel, the front fork, the body frame, and the rear wheel. In contrast to most previous studies, the relationship between a tire and the road is now considered in terms of tire forces rather than nonholonomic constraints. The body frame has six degrees of freedom, while the rear wheel and front fork each have one degree of freedom relative to the body frame. The front wheel exhibits a single degree of freedom relative to the front fork. A bicycle has a total of nine degrees of freedom.
Technical Paper

Performance Evaluation of High Octane Gasoline Fuel(s) on High Compression Ratio (HCR) Motorcycle – Based on Chassis Dynamometer Test

2024-04-09
2024-01-2375
The present study aims to determine the comparative performance evaluation in terms of fuel economy (kmpl) and wide open throttle (WOT) power derived from set of different blends of high octane gasoline fuel(s) i.e., Neat Gasoline (E0), E10 & E20 (With different dosages of additives) in high compression ratio (HCR) motorcycle on chassis dynamometer facility. With the Government of India focus on use of alcohol as co-blend of gasoline with the endeavour to save foreign exchange and also to reduce greenhouse gases (GHG) emissions. The commercially available blended fuels, E10 & E20, have high research octane number (RON, 92-100) and as per the available literature high RON fuel have the better anti-knocking tendencies thereby lead to higher fuel economy. There are various routes to formulate high octane fuel (refining technologies, additive approach & ethanol blending route) in the range of 92-100 octane number which are currently commercialized in Indian market.
Technical Paper

Influence of Working Conditions and Operating Parameters on the Energy Consumption of a Full-Electric Bus. Experimental Assessment

2024-04-09
2024-01-2174
Given the growing interest in improving the efficiency of the bus fleet in public transportation systems, this paper presents an analysis of the energy consumption of a battery electric bus. During the experimental campaign, a battery electric bus was loaded using sand payloads to simulate the passenger load on board and followed another bus during regular service. Data related to the energy consumed by various bus utilities were published on the vehicle’s CAN network using the FMS standard and sampled at a frequency of 1 Hz. The collected experimental data were initially analyzed on a daily basis and then on a per-route basis. The results reveal the breakdown of energy consumption among various utilities over the course of each day of the experiment, highlighting those responsible for the highest energy consumption.
Technical Paper

Enhanced Longitudinal Vehicle Speed Control for an Autonomous Gas-Engine Vehicle: Improving Performance and Efficiency

2024-04-09
2024-01-2059
A linear parameter-varying model predictive control (LPVMPC) is proposed to enhance the longitudinal vehicle speed control of a gas-engine vehicle, with potential application in autonomous vehicles. To achieve this objective, an advanced vehicle dynamic model and a sophisticated fuel consumption model are derived, forming a control-oriented model for the proposed control system. The vehicle dynamic model accurately captures the motions of the tires and the vehicle body. The fuel consumption model incorporates new powertrain modes such as automatic engine stop/start, active fuel management, and deceleration fuel cut-off, etc. The performance of the proposed LPV-MPC is evaluated by comparing it to a PID controller. Both simulation tests and vehicle-in-the-loop tests demonstrate the superior performance of the proposed controller. The results indicate that the LPV-MPC provides improved longitudinal vehicle speed control and reduced fuel consumption.
Technical Paper

Study and Analysis on 3-Dimensional Simulation of the Transient Flow Process of Engine Electronic Control Throttle

2024-04-09
2024-01-2417
Based on the basic structure and operation function of engine throttle, according to the actual structure of a throttle, a 3-dimensional simulation of the transient airflow during the rotation of the throttle from the closed position to the fully open position is realized by using CFD together with the moving mesh technology and the user-defined program. The influence of the throttle movement on the airflow process is studied. The velocity field, pressure field, and flow noise field are analyzed at different angles of throttle rotation. The numerical simulation results show that at the beginning period of the throttle rotation, the vortex appears in the flow field behind the throttle, and the drop of the air pressure between the upstream and downstream position of the throttle is sharp.
Technical Paper

Path Planning and Robust Path Tracking Control of an Automated Parallel Parking Maneuver

2024-04-09
2024-01-2558
Driver’s license examinations require the driver to perform either a parallel parking or a similar maneuver as part of the on-road evaluation of the driver’s skills. Self-driving vehicles that are allowed to operate on public roads without a driver should also be able to perform such tasks successfully. With this motivation, the S-shaped maneuverability test of the Ohio driver’s license examination is chosen here for automatic execution by a self-driving vehicle with drive-by-wire capability and longitudinal and lateral controls. The Ohio maneuverability test requires the driver to start within an area enclosed by four pylons and the driver is asked to go to the left of the fifth pylon directly in front of the vehicle in a smooth and continuous manner while ending in a parallel direction to the initial one. The driver is then asked to go backwards to the starting location of the vehicle without stopping the vehicle or hitting the pylons.
Technical Paper

Enhancing Battery Thermal Management in Electric Vehicles through Reduced Order Modeling and Predictive Control for Quick Charging

2024-04-09
2024-01-2664
In the realm of electric vehicles (EVs), effective battery thermal management is critical to avert thermal runaway, overheating, and extend the operational lifespan of batteries. The process of designing thermal management systems can be substantially expedited through the utilization of modeling and simulation techniques. However, the high-fidelity 3D computational fluid dynamics (CFD) simulations often demand significant computational resources to provide comprehensive results under varying conditions. In this paper, we develop a reduced order model (ROM) to capture the battery thermal dynamics employing a sub-space method. To construct this ROM, we use high-fidelity CFD simulations to generate step responses of battery temperature with respect to the heat generation and cooling power. These step responses are subsequently used as training data for the ROM.
Technical Paper

Analysis of flatness based active damping control of hybrid vehicle transmission

2024-04-09
2024-01-2782
This paper delves into the investigation of flatness-based active damping control for hybrid vehicle transmissions. The main objective is to improve the current in-production controller performances without the need for additional sensors or observers. The primary goals include improving torque setpoint tracking, enhancing robustness margins, and ensuring zero steady-state torque correction. The investigation proceeds in several steps: Initially, both the general differential flatness property and the identification of flat outputs in linear dynamical systems are revisited. Subsequently, the bond graph formalism is employed to deduce straightforwardly the dynamical equations of the system. Next, a new flat output of the vehicle transmission is identified and utilized to formulate the trajectory tracking controller to align with the required control objectives and to fulfill the system constraints.
Technical Paper

A Real-Time Predictive Fuzzy Energy Management Based on Speed Prediction for Range Extended Electric Logistics Vehicle

2024-04-09
2024-01-2785
Due to the complexity and timeliness of the dual power source control system for range extended electric vehicles, a real-time predictive fuzzy energy management strategy based on speed prediction, which comprehensively takes into account the demand power of auxiliary power unit, future average speed and driving distance is proposed in this work. Firstly, to improve the topicality and accuracy of the control system, the convolutional neural network with long short-term memory neural network (CNN-LSTM) algorithm is adopted to predict the future driving speed by the speed features and adjacent speeds.
Technical Paper

Research on the Oscillation Reduction Control During Gearshift in Hybrid Electric Vehicles

2024-04-09
2024-01-2718
In order to realize the shift control of dual-motor hybrid electric vehicle (HEV), a non-power interruption shift control method based on three-power source coordination control was proposed by analyzing the shift process of dual-motor hybrid configuration. The shift control process was divided into three stages: oil-filling self-learning stage, torque exchange stage and inertia control stage. In the torque exchange stage, the characteristics of the speed stage and torque stage were analyzed, which was different from the traditional method's dependence on pressure sensor, longitudinal acceleration sensor and engine torque accuracy. A shift clutch gain self-learning strategy based on shift time and input shaft speed soaring problem was proposed.
Technical Paper

Research on the Anti-Shuffle Control for Hybrid Electric Vehicles in the Parallel Mode

2024-04-09
2024-01-2714
In order to solve the problems of the shuffle caused by internal and external excitation and the difficulty in obtaining the real-time accurate engine torque during the parallel mode operation of hybrid electric vehicles, a dynamic coordination control strategy for suppressing the jitter of hybrid electric vehicles based on the closed-loop control of engine speed was proposed. The engine torque filtering control method based on the slope limit was adopted to limit the rate of change of the engine torque and reduce the impact caused by the sudden change of the engine torque; the engine speed closed-loop control method was used to take the motor speed which is easy to be measured accurately in real time as the feedback control variable, which solved the problem of the real-time accurate estimation of the engine torque online. In parallel mode, the motor torque accounts for a small proportion because the torque distribution method gives priority to the engine.
X