Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A critical review of some Panel Contribution Analysis methods used in interior vehicle acoustics

2024-06-12
2024-01-2932
In the acoustic study of the interior noise of a vehicle, whether for structure-borne or air-borne excitations, knowing which areas contribute the most to interior noise and therefore should be treated as a priority, is the main goal of the engineer in charge of the NVH. Very often these areas are numerous, located in different regions of the vehicle and contribute at different frequencies to the overall sound pressure level. This has led to the development of several “Panel Contribution Analysis” (PCA) experimental techniques. For example, a well-known technique is the masking technique, which consists of applying a “maximum package” (i.e., a package with very high sound insulation) to the panels outside of the area whose contribution has to be measured. This technique is pragmatic but rather cumbersome to implement. In addition, it significantly modifies the dynamics and internal acoustics of the vehicle.
Technical Paper

Roadnoise Reduction through Component-TPA with Test and Simulation convergence using Blocked Force

2024-06-12
2024-01-2952
While conventional methods like classical Transfer Path Analysis (TPA), Multiple Coherence Analysis (MCA), Operational Deflection Shape (ODS), and Modal Analysis have been widely used for road noise reduction, component-TPA from Model Based System Engineering (MBSE) is gaining attention for its ability to efficiently develop complex mobility systems. In this research, we propose a method to achieve road noise targets in the early stage of vehicle development using component-level TPA based on the blocked force method. An important point is to ensure convergence of measured test results (e.g. sound pressure at driver ear) and simulation results from component TPA. To conduct component-TPA, it is essential to have an independent tire model consisting of tire blocked force and tire Frequency Response Function (FRF), as well as full vehicle FRF and vehicle hub FRF.
Technical Paper

Electric Vehicle Ride & Vibrations Analysis - Full electric vehicle MBD model development for NVH studies

2024-06-12
2024-01-2918
The NVH performance of electric vehicles is a key indicator of vehicle quality, being the structure-borne transmission predominating at low frequencies. Many issues are typically generated by high vibrations, transmitted through different paths, and then radiated acoustically into the cabin. A combined analysis, with both finite-element and multi-body models, enables to predict the interior vehicle noise and vibration earlier in the development phases, to reduce the development time and moreover to optimize components with an increased efficiency level. In the present work, a simulation of a Hyundai electric vehicle has been performed in IDIADA VPG with a full vehicle multibody (MBD) model, followed by vibration/acoustic simulations with a Finite elements model (FEM) in MSC. Nastran to analyze the comfort. Firstly, a full vehicle MBD model has been developed in MSC. ADAMS/Car including representative flexible bodies (generated from FEM part models).
Technical Paper

Definition and Application of a Target Cascading Process on a Fully Trimmed Body, from Vehicle Objectives to Component Objectives

2024-06-12
2024-01-2916
Finite element (FE) based simulations for fully trimmed bodies are a key tool in the automotive industry to predict and understand the Noise, Vibration and Harshness (NVH) behavior of a complete car. While structural and acoustic transfer functions are nowadays straight-forward to obtain from such models, the comprehensive understanding of the intrinsic behavior of the complete car is more complex to achieve, in particular when it comes to the contribution of each sub-part to the global response. This paper proposes a complete target cascading process, which first assesses which sub-part of the car is the most contributing to the interior noise, then decomposes the total structure-borne acoustic transfer function into several intermediate transfer functions, allowing to better understand the effect of local design changes.
Technical Paper

Active Vibration Control of Road Noise Path Using Piezoelectric Stack Actuators and Filtered-X LMS Algorithm for Electric Vehicle Applications

2024-06-12
2024-01-2953
This paper presents the novel active vibration control (AVC) system that controls vehicle body vibration to reduce the structural borne road noise. As a result of vehicle noise testing in an electric vehicle, the predominant frequency of vehicle body vibration that worsens interior noise is in the range of 150-250Hz. Such vibration in that frequency range, commonly masked in engine vibrations, are hard to neglect for electric vehicles. The vibration source of that frequency is the resonance of tire cavity mode. Resonator or absorption material has been applied inside the tire for the control of cavity noise as a passive method. They require an increment of weight and cost. Therefore, a novel method is necessary. The vibration amplified by resonance of cavity mode is transferred to the vehicle body throughout the suspension system. To reduce the vibration, AVC system is applied to the suspension mount.
Technical Paper

Mathematical Model for the Rotation of a Door Including Vehicle Inclination

2024-04-17
2024-01-5045
The analysis presented in this document demonstrates the mathematical model approach for determining the rotation of a door about the hinge axis. Additional results from the model are the torque due to gravity about the axis, opening force, and the door hold open check link force. Vector mechanics, equations of a plane, and parametric equations were utilized to develop this model, which only requires coordinate points as inputs. This model allows for various hinge axis angles and door rotation angles to quickly be analyzed. Vehicle pitch and roll angles may also be input along with door mass to determine the torque about the hinge axis. The vector calculations to determine the moment arm of the door check link and its resulting force are demonstrated for both a standard check link design and an alternate check link design that has the link connected to a slider translated along a shaft.
Technical Paper

Analysis of the Event Data Recorder (EDR) Function of a GM Active Safety Control Module (EOCM3 LC)

2024-04-09
2024-01-2888
The Advanced Driver Assistance System (ADAS) is a comprehensive feature set designed to aid a driver in avoiding or reducing the severity of collisions while operating the vehicle within specified conditions. In General Motors (GM) vehicles, the primary controller for the ADAS is the Active Safety Control Module (ASCM). In the 2013 model year, GM introduced an ASCM utilizing the GM internal nomenclature of External Object Calculation Module (EOCM) in some of their vehicles produced for the North American market. Similar to the Sensing and Diagnostic Module (SDM) utilized in the restraints system, the EOCM3 LC contains an Event Data Recorder (EDR) function to capture and record information surrounding certain ADAS or Supplemental Inflatable Restraint (SIR) events. The ASCM EDR contains information from external object sensors, various chassis and powertrain control modules, and internally calculated data.
Technical Paper

Mechanical response and energy absorption characteristics of origami-inspired honeycomb under quasi-static compression and dynamic impact

2024-04-09
2024-01-2236
The origami structures have received increasing attention in recent years due to the high stiffness ratio and lightweight feature. This paper has proposed an origami-based honeycomb structure and investigated the mechanical properties of the structure. The compression response and energy absorption of the structure under quasi-static loading have been investigated experimentally and numerically. The numerical results closely matched the experimental results in terms of the compression force curve and deformation patterns. The effects of different structural parameters on the mechanical response and energy absorption characteristics were analyzed with the validated model. Finally, the comparative results show that the origami-inspired honeycomb structure, which is characterized by rotational folding mode under axial compression, has better performance in terms of mechanical response and energy absorption.
Technical Paper

Parameters Affecting Torsional Stiffness of Vehicle Doors

2024-04-09
2024-01-2226
Side doors are pivotal components of any vehicle, not only for their aesthetic and safety aspects but also due to their direct interaction with customers. Therefore, ensuring good structural performance of side doors is crucial, especially under various loading conditions during vehicle use. Among the vital performance criteria for door design, torsional stiffness plays an important role in ensuring an adequate life cycle of door. This paper focuses on investigating the impact of several door structural parameters on the torsional stiffness of side doors. These parameters include the positioning of the latch, the number of door side hinge mounting points on doors (single or double bolt), and the design of door inner panel with or without Tailor Welded Blank (TWB) construction.
Technical Paper

Optimization of Structural Rigidity of the Door Module Mounting part

2024-04-09
2024-01-2223
The recent surge in platforms like YouTube has facilitated greater access to information for consumers, and vehicles are no exception, so consumers are increasingly demanding of the quality of their vehicles. By the way, the door is composed of glass, moldings, and other parts that consumers can touch directly, and because it is a moving part, many quality issues arise. In particular, the door panel is assembled from all of the above-mentioned parts and thereby necessitates a robust structure. Therefore, this study focuses on the structural stiffness of the door inner panel module mounting area because the door module is closely to the glass raising and lowering, which is intrinsically linked to various quality issues.
Technical Paper

Effect of Side Door Check Arm Profile on Side Door Closing Velocity

2024-04-09
2024-01-2221
The side-door operation of vehicle is vital to the customer, as it reflects the overall build quality of the vehicle. The side door check arm is one of the primary components that determine the operating characteristics of a vehicle door. The profile of the check arm has a significant impact on the closing effort of side doors. In this study, the check arm profiles are analyzed virtually in relation to the side door's closing velocity. A virtual door model was developed in ADAMS to simulate the side door closing and opening. The study involves a check arm that guides the ball spring mechanism housing unit over the guide profile. Typically, a check-arm guide profile has two or three indents at a specific location which serves to maintain the door open in those positions. When a door enters an indent, the user must exert an effort to traverse it. Furthermore, the slope profile of the check arm defines the self-closing assist offered from the initial indent to the latching position.
Technical Paper

A Target-Speech-Feature-Aware Module for U-Net Based Speech Enhancement

2024-04-09
2024-01-2021
Speech enhancement can extract clean speech from noise interference, enhancing its perceptual quality and intelligibility. This technology has significant applications in in-car intelligent voice interaction. However, the complex noise environment inside the vehicle, especially the human voice interference is very prominent, which brings great challenges to the vehicle speech interaction system. In this paper, we propose a speech enhancement method based on target speech features, which can better extract clean speech and improve the perceptual quality and intelligibility of enhanced speech in the environment of human noise interference. To this end, we propose a design method for the middle layer of the U-Net architecture based on Long Short-Term Memory (LSTM), which can automatically extract the target speech features that are highly distinguishable from the noise signal and human voice interference features in noisy speech, and realize the targeted extraction of clean speech.
Technical Paper

Research on Occupant Injury Prediction Method of Vehicle Emergency Call System Based on Machine Learning

2024-04-09
2024-01-2010
The on-board emergency call system with accurate occupant injury prediction can help rescuers deliver more targeted traffic accident rescue and save more lives. We use machine learning methods to establish, train, and validate a number of classification models that can predict occupant injuries (by determining whether the MAIS (Maximum Abbreviated Injury Scale) level is greater than 2) based on crash data, and ranked the correlation of some factors affecting vehicle occupant injury levels in accidents. The optimal model was selected by the model prediction accuracy, and the Grid Search method was used to optimize the hyper-parameters for the model.
Technical Paper

Art Meets Automotive: Design of a Curve-Adaptive Origami Gripper for Handling Textiles on Non-Planar Mold Surfaces

2024-04-09
2024-01-2575
The handling of flexible components creates a unique problem set for pick and place automation within automotive production processes. Fabrics and woven textiles are examples of flexible components used in car interiors, for air bags, as liners and in carbon-fiber layups. These textiles differ greatly in geometry, featuring complex shapes and internal slits with varying material properties such as drape characteristics, crimp resistance, friction, and fiber weave. Being inherently flexible and deformable makes these materials difficult to handle with traditional rigid grippers. Current solutions employ adhesive, needle-based, and suction strategies, yet these systems prove a higher risk of leaving residue on the material, damaging the weave, or requiring complex assemblies. Pincer-style grippers are suitable for rigid components and offer strong gripping forces, yet inadvertently may damage the fabric, and introduce wrinkles / folded-over edges during the release process.
Technical Paper

A Study on Optimizing Headlining Open-Structure for Face-to-Face Roof-Airbag Deployment

2024-04-09
2024-01-2394
In this study, an optimized structure for opening the headlining considering the deployment of the face-to-face roof airbag was studied. It was confirmed that the deployment performance differs depending on the skin of the headlining, and a standardized structure with mass production was proposed. Non-woven fabric and Tricot skin, which are economical and high-end specifications, satisfy the performance of PVC fusion application specifications after cutting 80% of the skin. The structure that satisfies the entire body including the knit specifications is a type that separates the roof airbag area piece, the corresponding soft piece is separated, and the deployment performance is satisfied with safety. Therefore, the structure is proposed as a standardized structure. This structure is expected to be applicable to roof DAB (Driver Airbag), PAB (Passenger Airbag), and Sunroof Airbag, which will be necessary technologies to secure indoor space.
Technical Paper

Dummy Positioning at Reclined Seating Position before Impact Testing

2024-04-09
2024-01-2490
Alongside advancements in automated vehicle technologies, occupants within vehicle compartments are enjoying increased freedom to relax and enjoy their journeys. For instance, reclined seating postures have become more prevalent and comfortable compared to upright seating when Highly Automated Vehicles (HAVs) are introduced. Unfortunately, most Anthropomorphic Testing Devices (ATD) do not support reclined postures. THOR-AV 50M is a specially designed dummy for reclined postures. As a crucial tool for developing safety restraint systems to protect reclined occupants, the first question is how to position it correctly on a reclined seat before impact testing. In this study, classical zero gravity seats were selected. H-point coordinators of selected seat at 25°, 40° and 60° seatback angle were measured and compared by using H-point machine (HPM) even though current HPM was not designed for reclined seat.
Technical Paper

Investigation of the Prediction Model and Assessment Parameters of Head Injury of Children Occupants Based on Machine Learning

2024-04-09
2024-01-2514
The head injury mechanisms of occupants in traffic accidents will be more complicated due to the diversified seating postures in autonomous driving environments. The injury risks and assessment parameters in complex collision conditions need to be investigated thoroughly. Mining the simulation data by the support vector machine (SVM) and the random forest algorithms, some head injury predictive models for a 6-year-old child occupant under a frontal 100% overlap rigid barrier crash scenario were developed. In these head injury predictive models, the impact speed and sitting posture of the occupant were considered as the input variables. All of these head injury predictive models were validated to have good regression and reliability (R2>0.93) by the ten-fold cross-validation. When the collision speed is less than 60km/h, rotational load is the primary factor leading to head injury, and the trends of BrIC, von Mise stress, Maxshear stress, and MPS are similar.
Technical Paper

Side Impact Characteristics in Modern Light Vehicles

2024-04-09
2024-01-2646
Occupant protection in side impacts, in particular for near-side occupants, is a challenge due to the occupant’s close proximity to the impact. Near-side occupants have limited space to ride down the impact. Curtain and side airbags fill the gap between occupant and the side interior. This analysis was conducted to provide insight on the characteristics of side impacts and the relevancy of currently regulated test configurations. For this purpose, 2007-2015 NASS-CDS and 2017-2021 CISS side crash data were analyzed for towed light vehicles. 2008 and newer model year vehicle data was selected to ensure that most vehicles were equipped with side/curtain airbags. The results showed that side impacts accounted for approximately 26.7% of the vehicles involved and 18.9% of the vehicles with at least one seriously injured occupant. Most side impacts involved damage to the front and front-to-center of the vehicle.
Technical Paper

Compatibility Between Vehicle Seating Environments and Load Legs on Child Restraint Systems (CRS)

2024-04-09
2024-01-2751
Load legs on child restraint systems (CRS) protect pediatric occupants by bracing the CRS against the floor of the vehicle. Load legs reduce forward motion and help manage the energy of the CRS during a crash. As more CRS manufacturers in the United States (US) consider incorporating these safety features into their products, benchmark data are needed to guide their design and usage. The objective of this study is to develop benchmark geometrical data from both CRS and vehicle environments to help manufacturers to incorporate compatible load legs into the US market. A sample of vehicle environments (n=104 seating positions from n=51 vehicles, model years 2015 to 2022) and CRS with load legs (n=10) were surveyed. Relevant measurements were taken from each sample set to compile benchmark datasets. Corresponding dimensions were compared to assess where incompatibilities might occur.
Technical Paper

Effects of Anthropometry and Passive Restraint Deployment Timing on Occupant Metrics in Moderate-Severity Offset Frontal Collisions

2024-04-09
2024-01-2749
There are established federal requirements and industry standards for frontal crash testing of motor vehicles. Consistently applied methods support reliability, repeatability, and comparability of performance metrics between tests and platforms. However, real world collisions are rarely identical to standard test protocols. This study examined the effects of occupant anthropometry and passive restraint deployment timing on occupant kinematics and biomechanical loading in a moderate-severity (approximately 30 kph delta-V) offset frontal crash scenario. An offset, front-to-rear vehicle-to-vehicle crash test was performed, and the dynamics of the vehicle experiencing the frontal collision were replicated in a series of three sled tests. Crash test and sled test vehicle kinematics were comparable. A standard or reduced-weight 50th percentile male Hybrid III ATD (H3-50M) or a standard 5th percentile female Hybrid III ATD (H3-5F) was belted in the driver’s seating position.
X