Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Electromagnetic Compatibility Assessment of Electric Vehicles During DC-Charging with European Combined Charging System

2024-07-02
2024-01-3008
The ongoing energy transition will have a profound impact on future mobility, with electrification playing a key role. Battery electric vehicles (EVs) are the dominant technology, relying on the conversion of alternating current (AC) from the grid to direct current (DC) to charge the traction battery. This process involves power electronic components such as rectifiers and DC/DC converters operating at high switching frequencies in the kHz range. Fast switching is essential to minimize losses and improve efficiency, but it might also generate electromagnetic interferences (EMI). Hence, electromagnetic compatibility (EMC) testing is essential to ensure reliable system operations and to meet international standards. During DC charging, the AC/DC conversion takes place off-board in the charging station, allowing for better cooling and larger components, resulting in increased power transfer, currently up to 350 kW.
Technical Paper

Analysis of human driving behavior with focus on vehicle lateral control

2024-07-02
2024-01-2997
The optimization and further development of automated driving functions offers great potential to relieve the driver in various driving situations and increase road safety. Simulative testing in particular is an indispensable tool in this process, allowing conclusions to be drawn about the design of automated driving functions at a very early stage of development. In this context, the use of driving simulators provides support so that the driving functions of tomorrow can be experienced in a very safe and reproducible environment. The focus of the acceptance and optimization of automated driving functions is particularly on vehicle lateral control functions. As part of this paper, a test person study was carried out regarding manual vehicle lateral control on the dynamic vehicle road simulator at the Institute of Automotive Engineering.
Technical Paper

Measurements in the Recirculation Path of a Fuel Cell System

2024-07-02
2024-01-3009
When using "green" hydrogen, fuel cell technology plays a key role in emission-free mobility. A powertrain based on fuel cells (FC) shows its advantages over battery-electric powertrains when the requirement profile primarily demands high performance over a longer period of time, high flexible availability and short refueling times. In addition, FC achieves higher effi-ciencies than the combustion of hydrogen in a gas engine, meaning that the chemical energy is used more efficiently than with established combustion engines. When using FC technology, numerous companies in Baden-Württemberg can contribute their specific expertise from the traditional automotive construction and supplier business. This includes auxiliary units in the air (cathode) and hydrogen (anode) path, such as the air compressor, the H2 recycling pump, humidifier, cooling system, power electronics, valve and pressure tank technology as well as components of the fuel cell stack itself.
Technical Paper

Impact of AdBlue Composition and Water Purity on Particle Number Increase

2024-07-02
2024-01-3012
Previous studies have shown that dosing AdBlue into the exhaust system of diesel engines to reduce nitrogen oxides can lead to an increase in the number of particles (PN). In addition to the influencing factors of exhaust gas temperature, exhaust gas mass flow and dosing quantity, the dosed medium itself (AdBlue) is not considered as a possible influence due to its regulation in ISO standard 22241. However, as the standard specifies limit value ranges for the individual regulated properties and components for newly sold AdBlue, in reality there is still some margin in the composition. This paper investigates the particle number increase due to AdBlue dosing using several CPCs. The increase in PN is determined by measuring the number of particles after DPF and thus directly before dosing as well as tailpipe. Several AdBlue products from different sources and countries are measured and their composition is also analyzed with regard to the limit values regulated in the standard.
Technical Paper

Adaptive Inverse Control of Vibration Exciter for Tracking Target Acceleration of a Car Subsystem

2024-06-12
2024-01-2920
This research aims to develop an inverse control method capable of adaptively simulating dynamic models of car subsystems in the rig-test condition. Accurate simulation of the actual vibration conditions is one of the most crucial factors in realizing reliable rig-test platforms. However, most typical rig tests are conducted under simple random or harmonic sweep conditions. Moreover, the conventional test methods are hard to directly adapt to the actual vibration conditions when switching the dynamic characteristics of the subsystem in the rig test. In the present work, we developed an inverse controller to adaptively control the vibration exciter referring to the target vibration signal. An adaptive LMS filter, employed for the control algorithm, updated the filter weights in real time by referring to the target and the measured acceleration signals.
Technical Paper

Adaptive Model Predictive Control for Articulated Steering Vehicles

2024-04-12
2024-01-5042
Vehicles equipped with articulated steering systems have advantages such as low energy consumption, simple structure, and excellent maneuverability. However, due to the specific characteristics of the system, these vehicles often face challenges in terms of lateral stability. Addressing this issue, this paper leverages the precise and independently controllable wheel torques of a hub motor-driven vehicle. First, an equivalent double-slider model is selected as the dynamic control model, and the control object is rationalized. Subsequently, based on the model predictive control method and considering control accuracy and robustness, a weight-variable adaptive model predictive control approach is proposed. This method addresses the optimization challenges of multiple systems, constraints, and objectives, achieving adaptive control of stability, maneuverability, tire slip ratio, and articulation angle along with individual wheel torques during the entire steering process of the vehicle.
Technical Paper

Automotive Validation Using Python to Control Test Equipment and Automate Test Cases

2024-04-09
2024-01-2848
Validation plays a crucial role in any Electronic Development process. This is true in the development of any automotive Electronic Control Unit (ECU) that utilizes the Automotive V process. From Research and Development (R&D) to End of Line (EOL), every automotive module goes through a plethora of Hardware (HW) and Software (SW) testing. This testing is tedious, time consuming, and inefficient. The purpose of this paper is to show a way to streamline validation in any part of the automotive V process using Python as a driving force to automate and control Hardware-in-the-loop (HIL) / Model-in-the-loop (MIL) / Software-in-the-loop (SIL) validation. The paper will propose and outline a framework to control test equipment, such as power supplies and oscilloscopes, load boxes, and external HW. The framework includes the ability to control CAN communication signals and messages.
Technical Paper

Hardware-in-the-Loop (HIL) Test Platform Development for Seat Electronic Control Unit (ECU) Validation

2024-04-09
2024-01-2854
Hardware-in-the-loop (HIL) testing is part of automotive V-design which is commonly used in automotive industries for the development of Electronic Control Unit (ECU). HIL test platform provides the capacity to test the ECU in a controlled environment even with scenarios that would be too dangerous or impractical to test on real situation, also the ECU can be tested even before the actual plant under building. This paper presents a HIL test platform for the validation of a seat ECU. The HIL platform can also be used for control and diagnostics algorithm development. The HIL test platform consists of three parts: a real time target machine (dSPACE SCALEXIO AutoBox), an ECU (Magna Seating M12 Module), and a signal conditioning unit (Load Box). The ECU produces the control commands to the real-time target machine through load box. The real time target machine hosts the plant model of the power seat which includes the kinematics and dynamics of the seat movements.
Technical Paper

Robust Adaptive Control for Dual Fuel Injection Systems in Gasoline Engines

2024-04-09
2024-01-2841
The paper presents a robust adaptive control technique for precise regulation of a port fuel injection + direct injection (PFI+DI) system, a dual fuel injection configuration adopted in modern gasoline engines to boost performance, fuel efficiency, and emission reduction. Addressing parametric uncertainties on the actuators, inherent in complex fuel injection systems, the proposed approach utilizes an indirect model reference adaptive control scheme. To accommodate the increased control complexity in PFI+DI and the presence of additional uncertainties, a nonlinear plant model is employed, incorporating dynamics of the exhaust burned gas fraction. The primary objective is to optimize engine performance while minimizing fuel consumption and emissions in the presence of uncertainties. Stability and tracking performance of the adaptive controller are evaluated to ensure safe and reliable system operation under various conditions.
Technical Paper

Energy Efficiency Technologies of Connected and Automated Vehicles: Findings from ARPA-E’s NEXTCAR Program

2024-04-09
2024-01-1990
This paper details the advancements and outcomes of the NEXTCAR (Next-Generation Energy Technologies for Connected and Automated on-Road Vehicles) program, an initiative led by the Advanced Research Projects Agency-Energy (ARPA-E). The program focusses on harnessing the full potential of Connected and Automated Vehicle (CAV) technologies to develop advanced vehicle dynamic and powertrain control technologies (VD&PT). These technologies have shown the capability to reduce energy consumption by 20% in conventional and hybrid electric cars and trucks at automation levels L1-L3 and by 30% L4 fully autonomous vehicles. Such reductions could lead to significant energy savings across the entire U.S. vehicle fleet.
Technical Paper

Methodology to Estimate Load Spectra of Autonomous and Highly Automated Vehicles

2024-04-09
2024-01-2326
The knowledge of representative load collectives and duty cycles is crucial for designing and dimensioning vehicles and their components. For human driven vehicles, various methods are known for deriving these load spectra directly or indirectly from fleet measurement data of the customer vehicle operation. Due to the lack of market penetration of highly automated and autonomous vehicles, there is no sufficient fleet data available to utilize these methods. As a result of increased demand for ride comfort compared to human driven vehicles, autonomous vehicle operation promises reduced driving speeds as well as reduced lateral and longitudinal accelerations. This can consequently lead to decreasing operation loads, thus enabling potentially more light-weight, cost-effective, resource-saving and energy-efficient vehicle components.
Technical Paper

Damping Force Optimal Control Strategy for Semi-Active Suspension System

2024-04-09
2024-01-2286
Semi-active suspension system (SASS) could enhance the ride comfort of the vehicle across different operating conditions through adjusting damping characteristics. However, current SASS are often calibrated based on engineering experience when selecting parameters for its controller, which complicates the achievement of optimal performance and leads to a decline in ride comfort for the vehicle being controlled. Linear quadratic constrained optimal control is a crucial tool for enhancing the performance of semi-active suspensions. It considers various performance objectives, such as ride comfort, handling stability, and driving safety. This study presents a control strategy for determining optimal damping force in SASS to enhance driving comfort. First, we analyze the working principle of the SASS and construct a seven-degree-of-freedom model.
Technical Paper

Energy Dissipation Characteristics Analysis of Automotive Vibration PID Control Based on Adaptive Differential Evolution Algorithm

2024-04-09
2024-01-2287
To address the issue of PID control for automotive vibration, this paper supplements and develops the evaluation of automotive vibration characteristics, and proposes a vibration response quantity for evaluating the energy dissipation characteristics of automotive vibration. A two-degree-of-freedom single wheel model for automotive vibration control is established, and the conventional vibration response variables for ride comfort evaluation and the energy consumption vibration response variables for energy dissipation characteristics evaluation are determined. This paper uses the Adaptive Differential Evolution (ADE) algorithm to tune the PID control parameters and introduces an adaptive mutation factor to improve the algorithm's adaptability. Several commonly used adaptive mutation factors are summarized in this paper, and their effects on algorithm improvement are compared.
Technical Paper

Research on the Control Strategy of Electric Vehicle Active Suspension Based on Fuzzy Theory

2024-04-09
2024-01-2290
The performance of suspension system has a direct impact on the riding comfort and smoothness. For the traditional suspension can not effectively alleviate the impact of road surface and the poor anti-vibration performance, The dynamics model of vehicle suspension system is established, and the control model of vehicle four-degree-of-freedom active suspension is designed with fuzzy control strategy. On this basis, a comprehensive simulation model of the control model of vehicle active suspension coupled with road excitation is established. and the ride comfort of vehicles under different types of suspension are tested through Simulink. The simulation results show that compared with the passive suspension, the reduction of vehicle acceleration and dynamic deformation of the active suspension controlled by fuzzy PID can reach 33.76% and 22.45%. and the reduction of pitch Angle speed and dynamic load of the active suspension controlled by fuzzy PID can reach 16.18% and 10.72%.
Technical Paper

Evaluation of a Design Support Tool Incorporating Sensory Performance Model of Ride Comfort for Conceptual Design of Controlled Suspensions

2024-04-09
2024-01-2292
The objective of this study is to introduce and assess a computational tool designed to facilitate product development via sensory scores, which serve as a quantifiable representation of human sensory experiences. In the context of designing ride comfort performance, the specialized terminology—either technical or sensory—often served as a barrier to comprehension among the diverse set of specialists constituting the multidisciplinary team. In a previous study by the authors introduced a tool that incorporated a model of sensory performance, utilizing sensory scores as universally comprehensible metrics. However, the tool had yet to be appraised by a genuine cross-functional team. In this study, the tool underwent evaluation through a user-testing process involving twenty-five cross-functional team members engaged in the conceptual design phase at an automotive manufacturing company.
Technical Paper

Ride Comfort Enhancement of Railway Vehicles Using Magnetorheological Damper

2024-04-09
2024-01-2291
The study investigates the ride comfort of a rail vehicle with semi-active suspension control and its effect on train vertical dynamics. The Harmony Search algorithm optimizes the gains of a proportional integral derivative (PID) controller using the self-adaptive global best harmony search method (SGHS) due to its effectiveness in reducing the tuning time and offering the least objective function value. Magnetorheological (MR) dampers are highly valuable semi-active devices for vibration control applications rather than active actuators in terms of reliability and implementation cost. A quarter-rail vehicle model consisting of six degrees of freedom (6-DOF) is simulated using MATLAB/Simulink software to evaluate the proposed controller's effectiveness. The simulated results show that the optimized PID significantly improves ride comfort compared to passive.
Technical Paper

Fitting Laplace Process Parameters for Non-equidistant Road Roughness Data

2024-04-09
2024-01-2298
Road roughness is the most important source of vertical loads for road vehicles. To capture this during durability engineering, various mathematical models for describing road profiles have been developed. The Laplace process has turned out to be a suitable model, which can describe road profiles in a more flexible way than e.g., Gaussian processes. The Laplace model essentially contains two parameters called C and ν (to be explained below), which need to be adapted to represent a road with certain roughness properties. Usually, local road authorities provide such properties along a road on sections of constant length, say, 100 m. Often the ISO 8608 roughness coefficient or the IRI (International Roughness Index) are used. In such cases, there are well known explicit formulas for finding the parameters C and ν of the Laplace process, which best fits the road under certain assumptions.
Technical Paper

Cool System, Lasting Power - an Outstanding E-Powertrain Meets MX Dirt Track

2024-04-09
2024-01-2165
The powertrain electrification is currently not only taking place in public road mobility vehicles, but is also making its way to the racetrack, where it’s driving innovation for developments that will later be used in series production vehicles. The current development focus for electric vehicles is the balance between driving power, range and weight, which is given even greater weighting in racing. To redefine the current limits, IAV developed a complete e-powertrain for a racing MX motorcycle and integrated it into a real drivable demonstrator bike. The unique selling point is the innovative direct phase-change cooling (PCC) of the three-phase e-motor and its power electronics, which enables significantly increased continuous power (Pe = 40 kW from 7,000 rpm to 9,000 rpm) without thermal power reduction. The drive unit is powered by a replaceable Lithium-Ion round cell battery (Ubat,max = 370V) with an energy storage capacity of Ebat = 5 kWh.
Technical Paper

Mapping an Optimum DC-Link Voltage across the Entire SiC-Based EV Drive Regions Using a Synchronous Boost DC-DC Converter

2024-04-09
2024-01-2218
When designing an electric vehicle (EV) traction system, overcoming the issues arising from the variations in the battery voltage due to the state of charge (SoC) is critical, which otherwise can lead to a deterioration of the powertrain energy efficiency and overall drive performance. However, systems are typically documented under fixed voltage and temperature conditions, potentially lacking comprehensive specifications that account for these variations across the entire range of the vehicle operating regions. To tackle this challenge, this paper seeks to adjust an optimal DC-link voltage across the complete range of drive operating conditions by integrating a DC-DC converter into the powertrain, thereby enhancing powertrain efficiency. This involves conducting a comprehensive analysis of power losses in the power electronics of a connected converter-inverter system considering the temperature variations, along with machine losses, accounting for variable DC-link voltages.
Technical Paper

Application of Motor Load Emulation Techniques for EPB (Electric Parking Brake) System Tests

2024-04-09
2024-01-2274
The EPB (Electric Parking Brake) system is divided into two parts based on VDA305-100 recommendation (German Association of the Automotive Industry, VDA). One part of the EPB system contains the parking brake actuator, caliper, and actuation logic (parking brake controller, PBC). The second part of the EPB system is called to the HOST which contains the EPB power electronics, necessary peripherals and controls the functions that the driver can experience. According to VDA305-100, the PBC is responsible for recognition of a fault in the parking brake actuator based on the measured values transmitted from the HOST such as EPB motor voltage and current. Due to mechanical fault injection limitations, failsafe tests require physically electrical emulation caused by parking brake actuator faults to verify the parking brake actuator fault detection and management algorithm.
X